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Abstract—While intelligent applications (e.g., recommenda-
tion systems) prefer different CPU-GPU ratios, GPU pooling
technique that decouples the GPU and CPU resources yields
substantial flexibility when serving diverse applications. With
such architecture, DNN-based recommendation services often
offload the compute-intensive neural network layers to the remote
GPU pool for high resource utilization. However, such a paradigm
results in the long end-to-end latency due to two causes: 1)
the intermediate data is copied for multiple times during the
entire process in current GPU pooling practices, incurring
heavy overheads; 2) the content transferred to the GPU pool
involves multiple small tensors, suffering from poor bandwidth
efficiency. To solve these problems, we design Zero, a runtime
system that incorporates a zero-copy transmission mechanism
as well as a dynamic tensor merging policy. The zero-copy
transmission mechanism unifies memory management across the
inference framework and the RPC framework, accompanied by
an elaborated serialization protocol to fully eliminate redundant
data copying. Meanwhile, the tensor merging policy deliberately
organizes small tensors into larger data blocks, so as to transfer
them with higher efficiency. Experimental results show that,
compared with prior work, Zero reduces the latency of typical
recommendation models by up to 15.1% (10.1% on average).

Index Terms—Recommendation Model, GPU Pool, Zero-copy
Serialization

I. INTRODUCTION

Recommendation systems are critical to the service profit
of commercial companies, and they widely use deep neural
networks (DNN) as the backbone. For instance, in Meta [1],
up to 79% of the DNN inference queries are generated by the
recommendation systems, other big players—like Google [2],
Amazon [3] and Alibaba [4]—also have similar characteristics.
In particular, the typical DNN models adopted in recommen-
dation systems (e.g., BST [5], DIEN [4], DSSM [6], and
ESMM [7]) all comprise embedding layers followed by the
computational layers. Regarding the resource preferences of
those layers, the embedding layers usually require large mem-
ory space to store the embedding tables, yet the computational
layers require powerful computing units for matrix opera-
tions [8]. Given such resource preferences, for a typical DNN
model in recommendation systems, the embedding layers are
often processed on CPUs (with abundant memory resources),
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Fig. 1: An example recommendation system in GPU pools.

whereas the computational layers are processed on GPUs (to
attain short response latency) [4], [9]–[12].

Cutting-edge computing servers in production clusters are
equipped with a certain number of GPUs and CPU cores [13]–
[15], yet such a fixed CPU-GPU resource ratio is inflexible for
runtime inference workloads in recommendation systems. For
example, on a server with two Intel Xeon Platinum 8369B
CPUs and 8 A100 GPUs [16], our measurements show that
the CPU utilization is already 60% when merely using a single
A100 GPU for inference queries in our production.In that case,
the other 7 GPUs cannot be fully utilized due to resource
contention on CPUs, thus leading to low throughput.

To support flexible allocation of heterogeneous resources, a
straightforward method is to build a separate GPU pool and
connect it to traditional CPU servers using the fast network.
The GPU pool offers substantial flexibility when hosting
diverse applications with different CPU-GPU demand ratios.
With such architecture, we could slice the recommendation
model—running the memory-intensive part (e.g., embedding
layers) on the local CPU server using traditional DNN in-
ference framework, while offloading the GPU-intensive part
(e.g., the remaining computational layers) to the remote GPU
pool. The two parts communicate through Remote Procedure
Call (RPC) framework with serialization library (e.g., Pro-
tobuf [17]). The actual data transmission between the CPU
server and GPU pool can be done using RDMA (Remote
Direct Memory Access) [18] protocol, like RoCE [19]—the
industry standard Ethernet-based RDMA solution.

We further show an industrial example of the GPU-pool-
based recommendation system with Figure 1. In order to
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Fig. 2: Slicing of an e-commerce recommendation model.

offload the GPU-intensive part to the GPU pool, the interme-
diate tensors generated by the embedding layer (affiliated with
metadata like tensor size) are serialized and encoded into an
RPC message. The serialized message is built into the RDMA
buffer to transfer with RDMA [20], and then sent to a GPU
node based on the RPC scheduling policy (e.g., to a GPU node
with the shortest queue [21]). The GPU node deserializes the
received data, performs the following computation, and returns
the recommendation results.

Although the above mechanism is easy for production
usage, it would however result in long latency of the recom-
mendation query, and there are two reasons for that.

First, serialization and deserialization are time-consuming
due to multiple redundant data copying processes. As shown
in Figure 1, in preparation for RPC transmission, the tensor is
copied from the memory space of the inference framework
to generate a message object in the RPC framework. A
serialization library (e.g., Protobuf) then encodes the message
object into a binary data stream for the transmission [22]. The
serialization also introduces a data copying because the mem-
ory layout of the message object is different from the binary
encoding format (such data copying also exists symmetrically
in the deserialization phase). In particular, a recent work,
Cornflakes [23], uses NIC Scatter-Gather (SG) to eliminate the
data copying during serialization and deserialization, but it still
requires data copying in generating the message object: NIC
SG can only send data located in RDMA buffer, yet inference
frameworks like TensorFlow and PyTorch store tensors out of
the RDMA buffer. To summarize, redundant data copying in
RPC transmissions brings non-negligible time overheads.

Second, transferring multiple small tensors to the pool is
inefficient. As shown in Figure 2, in an e-commerce rec-
ommendation model [4], the embedding layer takes the user
behavior sequence, the target item, and many other features
as the inputs. These inputs are embedded as many different
intermediate tensors and transferred to the GPU pool. The
sizes of intermediate tensors to be transferred to the GPU pool
are usually small. In our production recommendation model,
there are more than one hundred intermediate tensors gener-
ated in a recommendation query while about 60% of them
are smaller than 1KB. Similar distribution can be found in
general recommendation models. However, when the RDMA
NIC continuously transfers multiple small data blocks, the
transmission cost may be higher than merging them into a
new large data block and then transferring the new block. For

example, it takes 10.9µs to consecutively transfer two 1KB
data blocks, whereas transferring a merged version of one
2KB-block only takes 5.6µs.

We note that the isolated design of the DNN inference
framework and the RPC framework is a chief culprit for
the inefficiencies described above. With the isolated design,
the two frameworks manage their data and memory space
separately. In contrast, with framework co-design, it is possible
for the inference framework to directly allocate the memory
for the intermediate tensor in the memory region that can
be directly reached by the RPC framework. In this way, all
the tensors can be transferred to the GPU pool without being
redundantly copied, and the small tensors can be organized
into large data blocks during transmission. Although merging
tensors shows the advantage, inappropriate merging may lead
to low transmission efficiency on the contrary (detailed later
in Figure 5). This is because merging too many or too large
data blocks brings non-negligible extra cost.

We therefore propose Zero, a system that co-designs the
inference and RPC framework. Zero comprises a zero-copy
transmission mechanism and a dynamic tensor merging policy.
The zero-copy transmission mechanism introduces unified
memory management across the inference framework and RPC
framework to enable transferring tensors with RDMA directly.
An elaborated serialization protocol is provided in the mecha-
nism to prevent tensors from being copied repeatedly in RPC
transmission, and send metadata and tensors to the appropriate
memory location of the GPU node in the pool separately.
Meanwhile, we also design a tensor merging policy, which
can identify which tensors should be merged for transferring
according to the distribution of tensor sizes, with the objective
of achieving higher transmission efficiency.

While Zero has been deployed in our production GPU
pools, we conduct experiments on our local machines for the
purpose of test flexibility. Our experimental results show that:
1) compared with Protobuf [17], Zero averagely reduces the
end-to-end latency by 18.5% (up to 32.0%), and 2) compared
with Cornflakes [23], Zero averagely reduces the end-to-end
latency by 10.1% (up to 15.1%).

To summarize, this paper makes three main contributions:

• A comprehensive analysis of the problems of serving
recommendation systems with GPU pools. We find the
gap between inference framework and RPC framework
hurts the latency of recommendation models.

• An effective solution attaining short service latency
of GPU-pool-based recommendation systems. It avoids
redundant data copying and also accelerates data trans-
mission with deliberate tensor merging.

• Product-level implementation and justified perfor-
mance in production. We have implemented Zero using
TensorFlow [24] (as the inference framework), Protobuf
(as the serialization library) as well as our in-house RPC
framework (similar to eRPC [25]). Moreover, we have
deployed Zero in production environment and verified its
performance at a large scale.



II. RELATED WORK

Optimization for Inference. For general DNN models,
some studies focus on adaptively slicing the model for efficient
inference [26], [27]. While Zero slices the recommendation
models in a fixed pattern like prior work [4], [12]—running
embedding layer on CPU and other layers on GPU, Zero can
work with any slicing method because the design of Zero does
not rely on any assumption about the slicing. Other studies
focus on auto-tuning the batch size and GPU type during the
inference [28], [29]. Since adjusting the configurations does
not change the communication way between CPU and GPU
nodes, Zero is orthogonal to these studies. Aiming at recom-
mendation models, many prior studies focus on reducing the
cost of the embedding lookup. For example, partitioning the
embedding table [11], optimizing the embedding cache [30],
and speeding up the processing of embedding layers by
prefetching or in-storage computing [10], [31]. Instead of
changing the processing of embedding layers, Zero optimizes
the transmission of intermediate tensors between embedding
layers and subsequent layers.

GPU Pooling. When remote GPU computing is required,
there have been two kinds of studies: API Remoting [32],
[33] and customized API for devices [34]. These studies
require modifications on hardware or driver; without such
modifications, this work splits the computation graph from the
application layer and executes remote GPU inference through
RPC calls (similar to eRPC [35]). Because naively using RPC
communication leads to high communication overhead, this
work reduces the overhead through inference framework and
RPC framework co-design.

Acceleration for Serialization. There have been some
serialization library [23], [36], [37] designed to reduce data
copying. Flatbuffers [36] eliminates the data copying during
deserialization with the cost of longer serialized data compared
with Protobuf. Prior work [23], [38] shows that Flatbuffers and
Protobuf have similar performance. Cornflakes [23] relies on
the Scatter-Gather capability of the NIC to eliminate the data
copying, but it still requires data copying when generating the
message object. A serialization-free runtime called Naos [37]
can write Java objects directly to the receiver. But Naos can
only be used in Java runtime.

Merging Data Blocks in Transmission. Prior studies note
that merging some small data blocks to transfer together can be
better than transferring them separately [23], [39], [40]. They
tend to use a static threshold to guide which data blocks should
be merged together (e.g., zIO [40] merges data blocks whose
sizes are not larger than 16KB). Our investigation shows that
a static threshold is not suitable for different applications and
workloads. When GPU pool is shared by different applications
and workloads, Zero can dynamically set appropriate merge
thresholds for them.

III. MOTIVATION

A current GPU node often has multiple GPUs. For instance,
Google, Meta, and Microsoft tend to use nodes with eight

A100 GPUs [41]–[43]. With such stand-alone nodes, the CPU-
GPU resource ratio is fixed, while a datacenter often runs
multiple tasks that often have different optimal CPU-GPU
ratios. For instance, a training task often prefers more GPUs
on a single CPU node for quick GPU communication, and an
inference task often prefers fewer GPUs on a node. In this
case, it is not practical to physically move the GPU cards
among CPU nodes, while the tasks may change frequently. To
this end, this section seeks to answer two questions:

• Whether current node with multiple GPUs can efficiently
host workloads like recommendation models that also
have high CPU requirement? If not, can we use GPU
pool to improve the GPU efficiency?

• What are the causes that result in the long latency of
recommendation queries with GPU pool architecture?

A. Advantages of GPU Pool

In addition to CPU, GPU is used in recommendation model
inference [4], [12] because it is cost-effective. To illustrate,
we conduct a stress test with one 64-logical-core CPU (Intel
Xeon Platinum 8369B) by submitting a saturating number of
inference queries for the recommendation model BST [5]. The
batching technique [44] is enabled to improve the hardware
utilization. We observe that the peak throughput is 3,093
QPS and the average latency is 10.9ms (the batch size is
4; increasing it does not improve throughput but increases
the latency). In contrast, when using one A100 GPU (with
a batch size of 128), the peak throughput reaches 18,560 QPS
and the average latency is 9.6ms. This implies that six 64-
core CPUs are required to achieve the same throughput as
one GPU. According to the on-demand price on AWS [45],
renting six 64-core CPU instances costs 16.32 USD per hour
while renting an A100 GPU instance costs 4.09 USD per hour.
This means that using the GPU saves 75% of the cost.

As GPU nodes in today’s datacenters are often equipped
with multiple GPUs, we first investigate the efficiency of
a stand-alone node with multiple GPUs when serving rec-
ommendation models. We use four recommendation models
(BST [5], DIEN [4], DSSM [6] and ESMM [7]) as the bench-
marks. The benchmarks contain sequence features that reflect
users’ historical behaviors (sequence features are usually con-
tained in production models). Similar to previous work [8],
we add more feature columns and sequence features in the
input datasets to reveal the case of large-scale recommendation
models. We run the experiment on a node with two Intel Xeon
Platinum 8369B CPUs. Besides, there are eight A100 GPUs
on the node. Detailed experimental platform configuration is
shown in Table I.

In the experiment, we run the embedding layer on the CPUs
of the node and run the remaining layers on the GPUs. The
batch sizes of BST and DIEN are set to 512 while the batch
sizes of DSSM and ESMM are set to 2048. Using larger batch
sizes will not improve the GPU utilization in the experiment
of the stand-alone node.

The “Stand-alone” bar in Figure 3(a) shows the GPU
utilization when the benchmarks consume all CPU cycles—
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Fig. 3: GPU utilization and throughput of widely-used rec-
ommendation models.

the utilization of each CPU core of the node reaches 100%. In
the figure, the GPU utilization will be 800% when all GPUs of
the node are fully used because there are eight GPUs in total.
As we can see, for the four benchmarks, the GPU utilization
ranges from 182% to 426%. The GPUs are wasted, due to the
lack of CPU resources to process the embedding layers of the
recommendation model.

To improve the GPU utilization, a straightforward idea is
building GPU pools, and letting normal CPU nodes collaborate
with the nodes with multiple GPUs. GPU pooling allows us to
freely tune the CPU-GPU ratio according to the requirements
of workloads. Figure 1 shows the way that a GPU pool serves
a recommendation model.

We then conduct an experiment to verify if pooling can
improve the GPU efficiency. We put the above stand-alone
GPU node (with eight A100 GPUs) in the pool and connect
three CPU nodes (each CPU node is equipped with two Intel
Xeon 8396B CPUs) to this GPU node, while running the four
benchmarks respectively. The “Pool” bar in Figure 3 shows
the GPU utilization and throughput of each recommendation
model. As observed in the figure, pooling improves the GPU
utilization: as there are more available CPU resources, those
eight A100 GPUs can achieve higher utilization, and the
throughput (the number of completed queries within a second)
of the recommendation model increases at the same time.

B. Response Latency with GPU Pool

In this experiment, we analyze the latency of recommenda-
tion models with the GPU pool. We enable Multiple Instance
GPU (MIG) [46] for GPUs to simulate real-system scenarios.
MIG is used to partition a GPU into several parts for efficient
sharing. Without loss of generality, we partition an A100 GPU
into three MIG instances: 4g.40gb, 2g.20gb, and 1g.10gb.
Given that an A100 GPU has 98 streaming multiprocessors
(SMs) with MIG enabled, “2g.20gb” represents the GPU
instance that has 98 × (2/7) = 28 SMs, and 20GB global
memory. Default Protobuf [17] is used as the serialization
library. The queries are routed to the three GPU instances
using the JSQ [21] policy.

Figure 4 shows the average end-to-end latency (as well as
the breakdown) of each benchmark. The end-to-end latency
refers to the time it takes for a query to be submitted to the
CPU node and to obtain the inference result. In the figure,
the “Inference” part of the latency represents the computation
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Fig. 4: The latency breakdown of four recommendation models
deployed in the GPU pool.

time taken on CPU and GPU, while the other part is the
communication overhead between the CPU node and GPU
pool (denoted as COMM.).

We observe that the communication overhead accounts for
a non-negligible proportion of the end-to-end latency, and
that proportion increases as the batch size gets larger. For
example, in DIEN, the communication overhead takes 24%
of the latency when the batch size is 128, and the proportion
increases to 39% when the batch size increases to 512.

The relative portion of communication increases as the batch
size increases, because the benchmarks with small batch sizes
do not fully utilize the computational resources. In this case,
the computation time increase sub-linearly. For example, when
the batch size of DIEN in Figure 4 is 128, 256, and 512, the
computation time is 9.0ms, 11.0ms, and 16.5ms (increase sub-
linearly). On the contrary, the communication time is 2.9ms,
5.5ms, and 11.0ms (increase near-linearly).

C. Root Causes of High Communication Overhead

We identify two main reasons that cause the high commu-
nication overhead.

Multiple Redundant Data Copies. As already shown
in Figure 1, there exist four data copying operations when
serializing and deserializing the intermediate tensors. It is
possible to eliminate those data copying operations, if the RPC

8KB 8KB

6.14μs6.14μs

Separate:12.28μs

8KB 8KB

6.84μs

0.26μs

0.26μs

Merge: 7.36μs

64KB

11.17μs11.17μs

Separate:22.34μs

16.94μs

4.75μs

4.75μs

Merge: 26.44μs

64KB 64KB 64KB

(a) Two 8KB Blocks (b) Two 64KB Blocks

Transfer Copy

Fig. 5: The cost of transferring two data blocks separately
and transferring the merged data block
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framework is able to directly access the intermediate tensors
in the inference framework and the serialization protocol frees
the tensors from being copied in the RPC transmission. Such a
zero-copy mechanism requires the co-design of the inference
framework and the RPC framework.

Inefficient Transmission of Small Tensors. We find that
there are many small intermediate tensors to be transferred
when deploying recommendation models in the GPU pool. For
example, 60% intermediate tensors in DIEN are not larger than
10KB. However, it is inefficient to separately transfer multiple
small data blocks with RDMA. As shown in Figure 5(a),
separately transferring two 8KB data blocks takes 12.28µs
while transferring them after merging into a 16KB block
only takes 7.36µs. Although merging data blocks incurs extra
cost—it requires copying the to-be-merged data blocks to a
new memory space and placing them adjacently, the cost is
negligible when the data block is small. However, when there
are too many blocks to be merged or the data block size is
relatively large, the extra cost cannot be ignored, so separately
transferring data blocks will be a better choice instead, as
shown in Figure 5(b). A policy is required to identify which
tensors should be merged to maximize transmission efficiency.

While some prior work [23], [36], [39], [40] can reduce
the communication overhead to some extent, they are not
efficient for AI framework-based GPU pool. For example,
Cornflakes [23] uses NIC Scatter-Gather to eliminate the data
copying during serialization and deserialization, but the data
copying in generating the message object cannot be eliminated.
This is because Scatter-Gather can only send data located in
the RDMA buffer, yet the inference framework TensorFlow
as well as PyTorch stores tensors out of the RDMA buffer.
Besides, it cannot automatically send the intermediate tensor
and the metadata to the appropriate memory location of the
GPU node, resulting in another data copying process. We have
a detailed comparison in Section VI.

IV. DESIGN OF ZERO

In this section, we present an overview of Zero, followed by
the detailed design of the zero-copy transmission mechanism
and the dynamic tensor merging policy. Besides, we also
discuss the way to build effective GPU pools based on the
design and findings of Zero.

A. Overview

We therefore propose Zero, a system that co-designs the
inference framework and RPC framework. Zero comprises
a zero-copy transmission mechanism and a dynamic tensor
merging policy. The zero-copy transmission eliminates all the
data copies in RPC transmission. The tensor merging policy
properly merges small tensors to make them be transferred
efficiently. We use Figure 6 to explain how Zero works. When
an inference query is submitted, we run the embedding layer
on CPU node and offload the remaining computational layers
to the remote GPU node [4], [11], [12].

① The zero-copy transmission mechanism introduces uni-
fied memory management across the inference framework and
the RPC framework. By providing a shared memory space, the
inference framework can use the unified memory allocator to
directly allocate memory and store intermediate tensors into
the RDMA buffer of the RPC framework. ② Zero generates the
message object from the tensors. Instead of storing tensors in
the message object, we introduce a new data type rawstring (it
contains the pointer that points to the tensor) in the message
object, so that the copy of tensors could be eliminated. ③
The generated object is serialized into a binary data stream
(serialized message object). Since the message object does not
include actual tensors, tensors will not be serialized (also not
be copied) during the serialization.

④ Before transferring all tensors, the tensor merging policy
merges some tensors according to the distribution of tensor
sizes. ⑤ After that, the intermediate data is transferred to
the remote GPU node. While there have been many routing
policies [21], [47], [48], we route queries using the JSQ [21]
policy that is widely used [49]–[51] in routing queries across
multiple servers, based on the queue length of queries on each
GPU node. During data transmission, the RPC framework will
transfer the serialized message object to the main memory of
the GPU node and transfer the corresponding tensor to the
GPU global memory of the GPU node. ⑥ The GPU node
receives the serialized object and deserializes it; there is no
data copy since the serialized object does not include tensors.

Generally, the GPU pool hosts multiple models. It is usually
not possible to load all models on every GPU due to the lim-
itations of GPU memory. Models can be pre-loaded on some
GPUs rather than all GPUs in the pool according to historical
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statistics (model occupancy, traffic, etc.). Besides, NVIDIA
Unified Virtual Memory (UVM) [52] technique, which sup-
ports GPU memory over-subscription, can be merged in Zero
to achieve on-demand model loading.

Note that, the design of Zero is scalable, because one
GPU instance [46] is allocated to a single service, each GPU
instance uses a private memory pool that contains the buffer
communicated with the CPU node and dynamically scales.

B. Zero-copy Transmission Mechanism

This subsection describes the way to eliminate redundant
data copies in the RPC communication between the CPU node
and the GPU pool.

Unified Memory Management. A main reason for redun-
dant data copies is that the inference framework and the RPC
framework manage their memory space separately. To this end,
we propose to unify the memory management across the two
frameworks to provide a shared memory space.

The data transferred with RDMA should be located in the
registered memory region [20] (RDMA buffer). However, pop-
ular inference frameworks use their own memory allocators to
allocate memory (e.g., BFCAllocator [53] in TensorFlow and
DefaultCPUAllocator [54] in PyTorch) and store data outside
the RDMA buffer. If we want to transfer this data, we have to
copy the data to the buffer. To this end, we design a unified
memory allocator that can allocate RDMA-registered memory.
Using this allocator, the inference framework can directly store
tensors into the RDMA buffer, and the serialization library
can build the serialized data into the RDMA buffer as well.
As a result, this data can be directly transferred with RDMA
without copying.

The size of RDMA buffer should be carefully maintained
because it continuously occupies a memory region while this
memory region cannot be used by other applications. Hence,
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we should put data into the RDMA buffer as little as possible.
In the context of this paper, we just put the tensors transferred
to the remote GPU into the RDMA buffer, while leaving the
tensors used by local CPU computation outside the RDMA
buffer. Specifically, inference framework will use its original
allocator when it is generating the tensors of the memory-
intensive part of the model, while using the unified memory
allocator provided by Zero when generating the intermediate
tensors which will be transferred to the GPU pool.

Zero-copy Serialization and Deserialization. Although the
tensors can be directly transferred with RDMA, there are still
redundant data copies during serialization and deserialization
because the original design of the message object includes the
tensors. Taking Figure 7(a) as an example: when generating the
message object from a tensor (e.g., a two-dimensional array
in the figure), the message object includes the metadata of
this tensor (dimension and element type of this tensor) and
the tensor itself, which leads the first data copy. Then the
message object is serialized into the binary data stream: the
serialization library traverses every field of the message object
and encodes the field. Generally, a field will be encoded into
two parts—the description (e.g., the data type of this field)
and the content of this field. Consequently, the tensor is copied
once again. Similarly, the tensor will be copied one more time
when the tensor is extracted from the binary data stream during
the deserialization on the GPU node.

To eliminate those copies, we define a new data type (raw-
string) to replace the tensor in the message object, as shown in
Figure 7(b). The rawstring contains the pointer of the tensor
(memory address of the tensor). Although the rawstring will be
copied during the generation, serialization and deserialization
of the message object, the cost is negligible. This is because
the size of a pointer is just eight bytes and will not increase
as the size of the tensor gets larger.

We evaluate the effectiveness of the above zero-copy seri-
alization and deserialization: we transfer a single data block
with different sizes, during which using Protobuf and the above
proposed method (denoted as “Zero-copy S/D”) to perform
serialization and deserialization, and respectively record the
overall transmission time. The results are shown in Figure 8.
The proposed method outperforms Protobuf in all cases and
brings more benefits as the data block size gets larger.

Besides, because the tensor and metadata need to be re-
spectively processed on the GPU and CPU, we transfer the
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Fig. 9: Transmission time with different merging thresholds.

serialized message object containing the rawstring to the main
memory of the destination GPU node, and transfer the tensor
to the GPU global memory of the destination node.

C. Dynamic Tensor Merging Policy

This section describes how we merge tensors to improve
transmission efficiency. We first demonstrate why a dynamic
merging threshold is required and then introduce how to locate
the appropriate threshold.

Necessity of Merging Tensors Dynamically. As discussed
in Section III-C, merging small tensors into a large data block
may improve transmission efficiency. Because merging data
blocks requires copying data blocks, which brings extra cost,
merging tensors does not always offer advantages. Some prior
studies [23], [39], [40] noticed that issue and only merged
the data block whose size is not larger than a threshold (e.g.,
using 512B as the threshold [23]). However, a fixed threshold
cannot maximize the transmission efficiency. We find that the
appropriate threshold is not identical in different models: as
shown in Figure 9(a), when running BST/DIEN with batch
size 128 and running DSSM/ESMM with batch size 512, the
highest transmission efficiency is achieved with the threshold
set to 8KB, 64KB, 8KB and 8KB, respectively. On the other
hand, the batch size also has impacts on the merging threshold:
as shown in Figure 9(b), the appropriate threshold is 8KB,
64KB, 8KB for BST when the batch size is set to 128, 256 and
512, respectively. According to our statistics, the distribution
of intermediate tensor sizes varies across different models or
different batch sizes; this is why the appropriate threshold
changes as the workload changes.

Locating Appropriate Threshold. We develop a policy to
appropriately set the threshold; it can be done offline and does
not incur the runtime overhead in Zero.

Given that there are many tensors (t0, t1, · · · , tn) to be
transferred with RDMA while the size of ti is si, the trans-
mission time of ti is Tr(si), and the time of copying ti is
Cp(si), we can calculate the profit P (Tm) when the merging
threshold is set to Tm:

P (Tm) = Tr(
∑

si≤Tm

si) +
∑

si≤Tm

Cp(si)−
∑

si≤Tm

Tr(si) (1)

The first item and second item in Equation 1 calculate
the cost of merging all tensors ti whose sizes are smaller
or equal to the threshold Tm into a large data block and
transferring the merged data block. The third item in the
equation calculates the cost of separately transferring every
tensor ti. With this equation, we can calculate the profits of

a series of thresholds, and choose the threshold which brings
the maximum profit. For example, given all intermediate tensor
sizes (s1, s2, · · · , sn) of a query, we can calculate the profit
when using each si as the threshold.

The information required to calculate the profit can be
obtained by offline profiling. Under given batch size of a rec-
ommendation model, the distribution of the intermediate tensor
sizes is constant. We can therefore obtain the distribution by
submitting a query to the model. The transmission/copying
time can be obtained by profiling the transmission/copying
time of man-made data blocks with different sizes.

After merging some tensors into a new data block, the new
block instead of the original tensors will be transferred. We
modify the rawstring of the tensor that is merged, or this tensor
cannot be correctly located when deserializing the binary
data stream on the GPU node. Specifically, the rawstring is
modified to the memory address of the new data block plus
the tensor’s offset in the data block.

One may note that it is possible to eliminate the cost of
merging data blocks: by pre-allocating some slots with given
sizes in the RDMA buffer and letting the inference framework
store tensors in the slots, the tensors are naturally organized
into large data blocks. Since such an approach requires rel-
atively heavy modification to the inference framework, we
decide not to adopt it in Zero.

D. Building Effective GPU Pools

Based on the design of Zero and our investigation from
production, we provide some implications on how to build
a GPU pool with high performance and low total cost of
ownership (TCO). To build a GPU pool, we should determine
the appropriate number of GPUs on each GPU node, choose
the proper networks between CPU nodes and GPU pool, and
choose proper RDMA primitives if RDMA network is used.

The key guide of choosing specifications of each GPU
node is making GPUs achieve peak utilization, and saturate
the the network interface card (NIC) bandwidth at the
same time. Note that the GPU utilization and the size of data
that is required to be transferred are affected by the hosted ap-
plication (the model), we can profile the common applications
that will frequently run on the GPU pool. Given N models
(denoted by 1, 2, · · · , n), the size of data to be transferred
per second (denoted by Si), the GPU utilization (denoted by
Ui), the available bandwidth of the NIC (denoted by BWi),
the appropriate number of GPUs on a GPU node (denoted by
NGi) can be roughly calculated by NGi = (Ui/Si)×BWi.

Sometimes we need to use GPU nodes with fixed GPU
cards already existing in the cluster to build the GPU pool. In
this case, the goal is to minimize the number of GPUs used
to build the pool while hosting all models, and this can be
achieved by solving an optimization problem.

Given M GPU nodes (denoted by 1, 2, · · · ,m) and the
number of GPUs on node i is Ci, we introduce two variables:
yi and xij . If node i is used to build the pool, then yi is 1,
otherwise it is 0. If model j is deployed on node i, then xij
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is 1, otherwise it is 0. The optimization problem is described
with Equation 2:

Objective = MIN(
∑m

i=1
yi × Ci)

Constraint-1:
∑n

j=1
xij × Uj ≤ yi × Ci, i = 1, · · · ,m

Constraint-2:
∑n

j=1
xij × Sj ≤ BWi, i = 1, · · · ,m

Constraint-3:
∑m

i=1
xij = 1, j = 1, · · · , n

(2)

Model configuration systems (e.g., Morphling [28] and
Falcon [29]) can be used to collect the needed data above.

Choosing CPU and GPU Pool Networks. RDMA requires
expensive hardware support, maintenance and development
costs is high. Instead, using the TCP network does not require
configuring new hardware, which can reduce acquisition costs.
According to our measurements, with the support of high-
performance network components like DPDK [55], if the total
amount of transferred data is smaller than 1MB, the end-to-
end latency of a recommendation query is similar with RDMA
or TCP networks. In this case, TCP network is a better option
for connecting the CPU nodes with the GPU pool.

Choosing RDMA Primitives. When using RDMA to trans-
fer data, there are two available one-sided primitives (Read
and Write). In the RPC transmission with RDMA, the RPC
client and RPC server establish bilateral communication in the
beginning. The client notifies the server of how much data in
total will be transferred, and the server then allocates memory
with the corresponding size. After that, the data transferring
process starts. With Read primitive, the server is responsible
for transferring data (read data from the client); with Write
primitive, the client is responsible for transferring data. Since
transferring data consumes CPU resources, the main difference
between Read primitive and Write primitive is that one of the
client/server bears the CPU resource pressure.

In general, the Write primitive is a better option for two
reasons. Firstly, Read primitive is not a good choice when the
CPU resource of the GPU node is insufficient (Section III-A)
and the GPU node is the RPC server. Secondly, Read primitive
performs worse than Write primitive according to our exper-
iments. Figure 10 shows the time when we transfer different
sizes of a data block with Read primitive and Write primitive,
respectively. The Write operations are issued signaled, and
Read and Write operations are combined with a combination
of interrupt-based notification and polling. As we can observe,
Write primitive outperforms Read primitive in all cases. The
results are consistent with the research in X-RDMA [56].

V. IMPLEMENTATION

While we implement Zero based on TensorFlow (inference
framework), Protobuf [17] (serialization library), and our in-
house RPC framework (similar to eRPC [25]), Zero does not
rely on any specific characteristics of them.

In TensorFlow, to guide the inference framework to call
the appropriate memory allocator when generating tensors,
we introduce a new attribute (a key-value pair) in the model
description file (a .pbtxt file). After slicing the graph of
a model into a CPU subgraph and a GPU subgraph, the
attribute is automatically added to each output node of the
CPU subgraph. When TensorFlow generates the output tensors
of a node, it checks whether the node has the attribute or
not; if it does, the memory allocator provided by Zero is
used to allocate memory for the output tensors, or the default
memory allocator of TensorFlow is used. We also add two
member functions in class Tensor to enable type conversion
between the tensor and rawstring; these functions will be used
in Protobuf. The design principle of Zero can also benefit
other inference frameworks that manage their own memory
space independently when using the GPU pool. For instance,
PyTorch maintains the memory space by itself [54].

In Protobuf, because we introduce a new data type raw-
string, we need to ensure that this new data type works
correctly and efficiently. Specifically, we enhance Protocol
Buffer Compiler protoc [57] to enable assigning value to
rawstring. To make the new data type rawstring compatible
with the built-in features of Protobuf, we supplement the
support of rawstring in the features—RepeatedField, Reflec-
tion, dynamic message and extensions—of Protobuf. During
the serialization process, Protobuf traverses each data of the
message object and calls the corresponding serialization func-
tion of each data type. The same process occurs during the
deserialization process. We supplement the serialization func-
tion WriteRawString() as well as the deserialization function
FillRawString() for rawstring.

Moreover, to ensure that the serialized message objects
can be transferred with RDMA directly, we utilize the Ze-
roCopyStream mechanism [58]. This mechanism provides an
interface Next() which offers a custom memory allocation
method for Protobuf. We customize the Next() interface to
provide RDMA-registered memory and empirically allocate
10KB memory in each invocation. In WriteRawString(), the
unused parts of the allocated RDMA-registered memory will
be freed to avoid memory waste.

In RPC framework, there is a list indicating which data
blocks will be transferred. Before transferring, we check the
sizes of data blocks from the list to merge some blocks
according to the merging threshold to improve transmission
efficiency. To avoid introducing redundant data copies on
destination GPU nodes, we send tensors to the GPU global
memory of the destination using GPUDirect RDMA [59] tech-
nique, and store the destination address into the corresponding
rawstring; the destination GPU node can extract this address
by deserializing the serialized message object.



TABLE I: Experimental specifications

Specification

Hardware
CPU: Intel Xeon Platinum 8369B @ 2.90GHz

GPU: Nvidia A100-SXM4-80GB
NIC: Mellanox ConnextX-5 adapters 2x100Gb/s

Software
OS: CentOS 7 with kernel 5.10

CUDA: Driver 470.154, SDK 11.4
Library: TensorFlow 1.15, Protobuf 3.8

VI. EVALUATION

In this section, we evaluate the effectiveness of Zero with
different recommendation models. We also introduce the de-
ployment effect of Zero in production.

A. Experimental Setup

Table I summarizes the hardware and software configura-
tions in the experiments. We evaluate Zero with a CPU server
and a GPU server. Every CPU/GPU node is equipped with two
Intel Xeon Platinum 8369B processors and communicates via
Mellanox ConnextX-5 NICs. The MIG is enabled to create
multiple GPU instances to simulate multiple GPU nodes.

In the experiments, four recommendation models (BST [5],
DIEN [4], DSSM [6] and ESMM [7]) are used. When using
a model for inference, we send large amounts of inference
queries at a fixed rate and measure the end-to-end latency. We
slice each model into the embedding layer and other layers;
we run the embedding layer on the local CPU node and the
remaining layers on the remote GPU nodes.

We compare Zero with the default Protobuf [17] and Corn-
flakes [23]. With Protobuf, the intermediate tensors will be
transferred directly to the GPU pool, while Cornflakes merges
some intermediate tensors in the transmission. We set the
merging threshold as its proposed value (512B) when using
Cornflakes. The queries are routed to GPU nodes using the
JSQ policy [21] in the experiments.

B. Overall Evaluation

We first evaluate Zero in the scene where a single CPU node
hosting a recommendation model sends inference queries to
three GPU instances (4g.40gb, 2g.20gb and 1g.10gb). In this
experiment, we use batch sizes that do not incur the SLA
violation (40ms, according to our production requirements).

Figure 11 shows the results in different models with dif-
ferent batch sizes. As we can see, Zero outperforms Protobuf
and Cornflakes in all cases. When respectively running BST,
DIEN, DSSM and ESMM, Zero—compared with Protobuf—
can shorten the average latency by 23.1% (up to 32.0%),
16.7% (up to 23.3%), 18.3% (up to 29.3%) and 16.0% (up
to 28.0%). Compared with Cornflakes, Zero can shorten the
average latency by 10.5% (up to 12.0%), 11.4% (up to 15.1%),
10.1% (up to 12.6%) and 8.3% (up to 10.6%).

The reason why Zero outperforms Protobuf and Cornflakes
in terms of end-to-end latency is that Zero decreases the com-
munication overhead in the RPC communication, as shown
in Figure 12. Firstly, while Zero eliminates all the data copies
during the RPC communication, the other two techniques bring

128 256 512 128 256 512 512 1024 2048 512 1024 20480

10000

20000

30000

40000

Av
g.

 L
at

en
cy

 (u
s)

BST DIEN DSSM ESMM

Protobuf Cornflakes Zero
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Fig. 12: Communication overhead corresponding to Figure 11.

data copies. With Protobuf, the intermediate tensors need to be
copied four times during the RPC communication, as shown
in Figure 1. With Cornflakes, the intermediate tensors need
to be copied twice. The first data copy is introduced on the
CPU node because Cornflakes requires to copy intermediate
tensors from the inference framework to the RDMA buffer.
The second data copy is introduced on the GPU node because
using Cornflakes to send a serialized message cannot adap-
tively distribute the tensor and metadata to the GPU global
memory and main memory of the destination GPU node.
Secondly, Zero appropriately set the merging threshold for
different workloads. Since Protobuf does not merge tensors,
and Cornflakes merges tensors with a fixed threshold (as
shown in Figrue 9, it cannot bring ideal efficiency), they bring
lower transmission efficiency than Zero.

Besides, we can observe that Zero shows a larger advantage
when the batch size gets larger. For example, when the
batch size is set to 128, 256 and 512 for DIEN, compared
with Protobuf, Zero reduces the average latency by 9.8%,
17.1% and 23.3%, respectively; compared with Cornflakes,
Zero reduces the average latency by 7.3%, 11.7% and 15.1%,
respectively. This is because when the batch size gets larger,
the amount of transferred data is increased: in DIEN, the
amount of transferred data is 2.2MB, 4.3MB, and 8.6MB
under the batch size 128, 256, and 512. In this case, the
communication overhead increases in Protobuf and Cornflakes
because they need to copy more data.

In conclusion, Zero brings lower end-to-end latency com-
pared with Protobuf and Cornflakes due to reducing the
communication overhead more effectively in GPU pools.

C. Ablation Study

We conduct experiments to individually evaluate the effec-
tiveness of the zero-copy transmission mechanism and tensor



BST DIEN DSSM ESMM
0

25000

50000
A

vg
. L

at
en

cy
 (u

s)
Zero-No_M-No_Z Zero-No_M Zero

Fig. 13: Avg. latency in different models.

merging policy. The experimental setup remains the same with
Section VI-B, and the batch sizes of the four models (BST,
DIEN, DSSM and ESMM) are respectively fixed to 512, 512,
2048 and 2048. We implement two variations of Zero: 1)
Disabling the two components of Zero (denoted as “Zero-
No M-No Z”), and 2) disabling tensor merging policy in
Zero (denoted as “Zero-No M”). Figure 13 shows the average
latency in different models.

Since the difference between Zero-No M-No Z and Zero-
No M is whether the zero-copy transmission mechanism is
enabled or not, the effectiveness of the zero-copy transmission
mechanism can be evaluated by comparing Zero-No M-No Z
with Zero-No M. As shown in the figure, the proposed zero-
copy transmission mechanism can significantly reduce the
latency in all cases. Specifically, the latency can be reduced
by 29.5%, 20.2%, 25.7% and 25.8% in BST, DIEN, DSSM
and ESMM, respectively.

By comparing Zero-No M with Zero, the effectiveness of
the tensor merging policy is evaluated. According to our
proposed tensor merging policy, the merging threshold in this
experiment is respectively set to 8KB, 64KB, 8KB and 8KB
for BST, DIEN, DSSM and ESMM for high transmission
efficiency. As we can see in the figure, the tensor merging
policy reduces the latency by 2.5%, 3.1%, 3.6% and 2.1% in
BST, DIEN, DSSM and ESMM. The benefits brought by the
tensor merging policy in these four models are not significant,
as the number of intermediate tensors in these models is not
large (only a few dozen), resulting in fewer opportunities to
merge small tensors. In our production model, there can be
hundreds of intermediate tensors, so the policy yields greater
benefits (detailed later in the next subsection).

In general, the zero-copy transmission can bring more
benefits than merging small tensors. This is because the zero-
copy transmission saves the multiple copying time of the large
tensors, while merging small tensors saves the transmission
time of the small tensors. The copying time of large tensors
is longer than the transmission time of the small tensors.

D. Impact of GPU Node Configurations

We additionally study the impact of GPU node configu-
rations. We use three dedicated A100 cards instead of three
A100 MIG instances (as in Section VI-B) as the GPU nodes.
While the A100 cards are connected via NVLink [60] in our
experiment, the recommendation models we currently use can

TABLE II: Configuration of our production clusters

Distribution of Servers
CPU Server A10 Server Eight-card A100 Server

Cluster 1 21.4% 65.5% 13.1%
Cluster 2 16.4% 81.2% 2.4%

be fully loaded onto a single GPU, meaning that an inference
query is only processed on one GPU. In this case, data is only
transferred between CPUs and GPUs rather than across GPUs.
Since Zero is designed for optimizing the RPC transmission
between CPUs and GPUs, the connections between GPUs do
not affect the performance of Zero.

Under the new configuration, compared with Cornflakes,
we observe that Zero can decrease the latency of BST query
by 9.4%, 14.5%, and 15.7% under the batch size 128, 256,
and 512. Note that under the old MIG-style GPU node
configuration, Zero decreases the latency by 8.1%, 11.3%,
and 12.0% under the corresponding batch sizes. It shows that
the benefit of Zero increases under the new configuration. We
observe similar results in other recommendation models. The
reason is that the computing power of each GPU node has
been improved under the new configuration, which leads to an
increased proportion of communication overhead in the end-
to-end latency.

Overall, the benefit of Zero increases with the computing
power of the GPU node.

E. Production Deployment

In this subsection, we demonstrate the benefits of deploying
recommendation models in the GPU pool and the effectiveness
of Zero in production.

Cluster Configuration. Table II shows the configurations
of our production clusters that have CPU-only servers, single-
card A10 GPU servers, and eight-card A100 GPU servers.
The two clusters have around 3000 servers each. The single-
card A10 GPU servers that are cost-efficient for inference are
used for host a large number of business class recommendation
models. When the loads of recommendation models are high,
the eight-card A100 servers are also used to serve the inference
queries based on Zero as GPU pools. With powerful A100
servers, the serviceability of the recommendation models is
improved while saving a considerable amount of cost of
purchasing new GPU servers.

Deployment Effect. Figure 14 presents the achieved
throughput under the required SLA target (40ms). We hide the
recommendation model names for commercial reasons. The
figure shows four cases, running the models on a local A100
GPU (denoted as “Local” in the figure), on a local A100 GPU
with 7 MIGs (denoted as “Local-M”), in GPU pool (denoted
as “Pool”), and in GPU pool with 7 MIGs (denoted as “Pool-
M”). Using GPU pool brings higher throughput because more
CPUs can be used to process the embedding layers. Comparing
Pool-M with Local-M, the throughput is improved by 1.9x to
2.5x when hosting different models.
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We evaluate the effectiveness of the two components of
Zero using actual production data. We collect intermediate
tensors of our production models with different batch sizes
deployed on the GPU pool to form four datasets (denoted as
“D1” to “D4”). Figure 15 shows the distributions of the data
of the four datasets. We first respectively transfer the four
datasets, during which using Protobuf and our proposed zero-
copy transmission mechanism (“Zero-copy S/D”) to perform
serialization and deserialization. The overall transmission time
is reported in Figure 16(a). Our proposed technique decreases
the transmission time by 19.3%, 18.6%, 9.7% and 18.6%
in the four datasets. We then respectively transfer the four
datasets without merging any tensor (“W/o merging”), and
respectively transfer the four datasets while merging some
tensors based on the proposed tensor merging policy (“W/
merging”). The transmission time is shown in Figure 16(b).
For the four datasets, our proposed tensor merging policy
can reduce the transmission time by 14.9%, 7.6%, 9.5% and
10.6%, respectively.

To summarise, GPU pooling enables cost-effectively en-
hancing the throughput of recommendation systems, and Zero
also effectively reduces end-to-end latency in production.

VII. CONCLUSION

In this work, we propose a system named Zero to reduce the
end-to-end latency of DNN-based recommendation systems
deployed in GPU pools. It is proposed based on the findings
that the long latency is mainly caused by the multiple data
copies in RPC communication, and the inefficient transmission
of multiple small tensors. Zero comprises a zero-copy trans-
mission mechanism, and a dynamic tensor merging policy.

The zero-copy transmission mechanism eliminates all the re-
dundant data copies. The tensor merging policy appropriately
merges small tensors into a large data block to improve trans-
mission efficiency. Experimental results show that, compared
with Protobuf and Cornflakes, Zero reduces the latency by
18.5% and 10.1% on average (up to 32.0% and 15.1%).
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