FedSU: Communication-efficient Federated
Learning with Speculative Updating

Wei Yu', Chen Chen!, Qinbin Li?, Jieru Zhao!, Shixuan Sun', Bo Li?, Minyi Guo',
IShanghai Jiao Tong University, Shanghai, China
2Huazhong University of Science and Technology, Wuhan, China
3Hong Kong University of Science and Technology, Hong Kong, China
Email: {yuweivvv, chen-chen}@sjtu.edu.cn, qinbin@hust.edu.cn, {zhao-jieru, sunshixuan} @sjtu.edu.cn,
bli@cse.ust.hk, guo-my@cs.sjtu.edu.cn

Abstract—Federated learning enables mobile devices to collab-
oratively learn a global model in iterative communication rounds.
Many sparsification methods have been proposed for commu-
nication compression of FL, working by not synchronizing in-
significant updates. However, we find there still exist unexploited
sparsification opportunities: given the update similarity across
different rounds, parameters often exhibit a linear updating
pattern; motivated by speculative execution in computer archi-
tecture domain, it is promising to use the predicted gradients to
refine the linearly-updating parameters without synchronization.
To that end, we propose Federated Learning with Speculative
Updating, or FedSU, to attain larger sparsification ratio without
compromising model accuracy. In particular, to identify the
linearly-updating parameters efficiently at runtime, we devise a
regression-free method that diagnoses parameter linearity based
on whether the second-order parameter difference is oscillating
around 0. Meanwhile, to ensure convergence validity, FedSU
leverages the prediction error as a feedback signal—so as to
timely return to regular updating if the parameter no longer
follows the linear pattern in reality. We have implemented FedSU
as a Python module, and large-scale experiments in an emulated
FL setup confirm that FedSU can remarkably improve the
communication efficiency of FL, with a convergence speedup of
over 40%.

I. INTRODUCTION

Federated Learning (FL) [1]-[3] is nowadays an increas-
ingly popular paradigm that allows edge clients to collaborate
in model training without disclosing their local private data.
In FL, the participating clients iteratively pull the latest model
parameters from the FL server and then push back the updated
ones after multiple local iterations (called a round). However,
due to the limited bandwidth resources of typical edge devices
and the increasing complexity of the neural network models,
communication between the FL clients and server has become
a major performance bottleneck.

To mitigate the network bottleneck in FL, a significant
amount of research works [4]-[9] have been proposed, of
which the sparsification-style methods [10]-[13] stand out
because of their potentially high communication compression
ratio. Sparification means to selectively synchronize only a
portion of the model parameters, and CMFL [11] and APF [12]
are two classical methods in that regard that can reduce the
communication volume without accuracy loss. Nonetheless,
those methods are essentially filtering out only those insignif-
icant updates (i.e., close to 0) at synchronization time, and

we notice that there still exists large unexploited territory
that can be leveraged for making more aggressive lossless
sparisification.

In fact, during the FL process, there usually exists strong
similarity among the updates of consecutive rounds, as in-
dicated by both existing works [11], [14] and our testbed
measurements (Sec. III-A). Given such cross-round update
similarity, our microscopic observations further show that, the
evolution trajectories of individual parameters often exhibit a
linear pattern. Therefore, it is promising to use the predicted
gradient instead of conducing real synchronization to harvest
the desired model updating effect. We note that such gradient
prediction task is similar to the CPU branch prediction prob-
lem in computer architecture design, for which speculative
execution [15], [16]—directly executing a probable branch
and rectifying the results in cases with wrong prediction—
is a highly effective solution. We therefore transfer the con-
cept of speculative execution into Federated Learning (FL),
and propose Federated Learning with Speculative Updating
(FedSU)—seeking to reduce communication cost by leverag-
ing the predicted updates for model refinement.

However, when enforcing FedSU into practice, there are two
challenges. First, given the resource constraints on edge clients
and potential gradient fluctuations, how to efficiently and ac-
curately identify the linearly-updating parameters at runtime?
Second, given that the linear evolution pattern may terminate
at any time during training, how to guarantee convergence
validity by timely resuming regular updating once the linear
pattern no longer holds?

Regarding the first challenge, we adopt an indirect linearity-
diagnosis method instead of conducting costly linear regres-
sion. We note that for a parameter updating linearly, its
gradient (i.e., first-order difference) would be stable, and the
second order difference would thus be close to (i.e., oscillating
around) 0. Therefore, we propose to make linearity diagnosis
based on a metric we call second-order oscillation ratio, which
further incorporates the smoothing technique to attain better
efficiency. For a parameter whose second-order oscillation
ratio is lower than a given threshold, we can judge it as in
linear mode, and can potentially use the predicted gradients
instead of the synchronized ones for its refinement. Regarding
the second challenge, we notice that the gradient prediction

error can be collected as a feedback signal indicating whether
the linear updating pattern still persists in reality. We also
mathematically prove that FedSU can guarantee convergence
validity for general non-convex models.

We have implemented FedSU with a Python Module called
FedSU_Manager. On each client, that module maintains a
predictability mask and uses it to sparsify (restore) the model
updates before (after) synchronization. Our evaluations in a
128-node EC2 cluster emulating realistic FL. setup show that,
FedSU can remarkably improve FL. communication efficiency
without accuracy loss. For example, it can speed up the conver-
gence of the ResNet model by 46.1% (with a communication
volume reduction of 71.7%). We also demonstrate that the
negative overhead of FedSU is negligible compared with its
performance benefit in efficiency optimization.

II. BACKGROUND
A. Federated Learning Basics

Data privacy is a key concern when adopting machine learn-
ing technology in many real-world scenarios like hospitals and
banks. Federated Learning (FL) [1], [2] comes as a popular
paradigm that allows multiple clients to jointly train a model
with minimum privacy leakage. In FL, there is a server node
that maintains the global model. Regarding the interaction
between the FL server and the clients, FedAvg [2] has been
commonly adopted as a norm for FL. In FedAvg, the FL clients
communicate with the FL server in communication rounds. In
each round, the FL clients pull the latest model parameters,
refine those parameters for multiple local iterations with their
private data, and finally report the updates' back to the FL
server; the FL server then refreshes the global model with the
average value of client updates.

In particular, server-client communication is a severe perfor-
mance bottleneck of FL. Compared with distributed machine
learning in dedicated clusters, the typical network bandwidth
between the FL server and clients is much smaller. For
example, when conducing FL with cellphones for mobile
applications like Gboard [17], the sever-client connection (over
the Internet) has a typical bandwidth of tens of Mega-bits
per second [18]. Existing studies [19]-[21] have shown that,
when training typical neural network model with Megabit-
level bandwidth, a substantial portion (e.g., over a half for
ResNet model) of the per-round time might be spent on
communication. Therefore, it is in urgent need to improve the
communication efficiency of FL.

B. Prior Arts and Their Limitations

In the literature, a bewildering array of research works
have already been proposed to improve the communication
efficiency of FL. As a classical method, quantization [4]-
[6] means to use fewer bits to represent each parameter

"Here “updates” mean the gradients instead of the parameters. While it is
the parameters that are synchronized by default under FedAvg [1], the two
schemes are essentially equivalent and we choose the former for simplicity.
Besides, in this paper we interchangeably use “gradient” and “update”, both
representing the parameter variation accumulated over an entire round.

update value in communication (i.e., from 32bits to 16bits);
meanwhile, matrix factorization [7]-[9] is also an effective
method that works by decomposing the vanilla gradient matrix
into two lower-rank vectors, the communication volume of
the latter is much smaller. However, the maximum communi-
cation compression level of quantization is relatively limited
(constrained by the minimum bit number required to ensure
convergence validity), and the matrix factorization methods
are only applicable to certain over-parameterized models [7],
both exhibiting noticeable limitations.

In recent years, the sparsification-style communication com-
pression techniques [10]-[13] have become increasingly pop-
ular, which are the focus of this paper. Sparsification means
to only transmit the updates that are significant enough when
conducting global aggregation. In that regard, CMFL [11] and
APF [12] are two classical algorithms that can mitigate com-
munication bottleneck without accuracy loss. Under CMFL,
a client reports its local gradients to the FL server only
when a sufficient portion of the (positive/negative) element
directions are consistent with the global ones. APF makes
sparsification decisions based on the convergence status of
individual parameters: it excludes a parameter from being
synchronized if that parameter converges earlier than others.

However, we find that the above sparsification meth-
ods fail to thoroughly exploit the potential communication-
optimization opportunities. By not transmitting the insignif-
icant gradients, these methods are essentially replacing the
value of the skipped gradients to 0 at aggregation time, with
the expectation that such replacement would (almost) not
affect the training accuracy. Note that, to preserve the training
accuracy is to preserve the expected parameter updating tra-
jectory; existing works actually seek to avoid communicating
insignificant gradients (e.g., the small-scale [11] or temporally-
zigzagging [12] gradients) as long as the macroscopic parame-
ter evolution pattern still holds. Nonetheless, those works only
focus on the pattern that the parameter stagnates, which is
over-conservative and renders the volume of gradients that
can be skipped for transmission quite limited. In fact, if a
parameter is not stagnating at a fixed value but changing at
a fixed slope, we can also train models effectively by directly
emulating the original updating trajectory without conducting
realistic gradient transmission. In that sense, stagnating pattern
is a special case of linearly-changing pattern; with such
generalization, we can open up a broader optimization space
and attain better communication efficiency.

Objective. Our objective of this paper is to further improve
FL communication efficiency with more aggressive gradient
sparsification. In the next section, we will conduct a series of
empirical measurements to systematically study the parameter
evolution characteristics during the FL process, quantitatively
exposing the potential sparsification opportunities therein.

><\10 x10 8.0

n ID: 611720

Param ID: 441001
Param ID: 271493
Param ID: 42450

- - . 2.0
0 1000 2000 0 1000 2000

Round Round
(a) CNN (b) DesNet

Fig. 1: Evolution trajectory curves of two randomly-selected parame-
ters when training CNN and DesNet. There exist widespread training
periods with strong trajectory linearity.

III. MOTIVATION
A. Prevalence of Linear Parameter Evolution Pattern

As previously discussed, we believe the linear parameter
evolution pattern is a promising angle to yield more aggressive
communication compression. Before exploring how to lever-
age such a linear pattern, we first measure how prevalent such
a linear pattern is during typical FL processes.

We first depict the instantaneous values of two randomly-
selected parameters respectively in a CNN model and the
DenseNet model (for the detailed description of the train-
ing setup, please refer to Sec. VI). As shown in Fig. 1,
the displayed parameters first change dramatically and then
only gently as training proceeds. In particular, the parameter
updating trajectories are indeed highly predictable: as marked
in the dashed lines, the parameter value curves exhibit strong
linearity for a large time portion of the entire training process.
Moreover, we also notice that the linearity periods for different
(scalar) parameters are not identical even in the same model,
indicating that our later sparsification decisions shall be made
in a fine-grained manner—independently for each parameter.
Such fine-grained behavior heterogeneity is also observed in
some existing works [10], [22]. For example, some features
may be easier to learn, and their corresponded parameters in
the neural network model may thus converge faster (called
non-uniform convergence in [10]).

In fact, linear parameter variation is not a coincidence
but a common pattern as endorsed by existing works.
Wang et al. [11] have pointed out that the model parameters
usually converge steadily and smoothly during training, with
the differences between any two sequential global updates
being quite small. They devise a metric called normalized
difference, which is defined as W; here ¢; is the (global)
update vector in iteration ¢. As reported by Wang et al. [11],
when training CNN and LSTM models, the normalized differ-
ence values for more than 93% global updates are smaller than
0.05; such small values indicate that the updates of consecutive
iterations are highly stable, and the parameter variation curves
thus possess strong linearity. In fact, it is widely accepted
in analysis that DNN models are smooth (see Assumption 1
in Sec. IV-D); an equivalent expression of the smoothness
property is that the second-order gradients be bounded by

0018

3}

8 0016

5

& oo

el

= 0012
9

= 0.010 (=)

13 O

XN 0.008 04

<

E 0.006

=} —— CNN
Z 0.004

DenseNet

0.002 0.0
0 500 1000 1500 2000 2500 0.000 0.005 0.010 0.015 0.020
Round Normalized Difference

(a) Instantanecous Norm. Difference (b) CDF of CNN and DenseNet

Fig. 2: The instantaneous values of Normalization Difference under
CNN, as well as the cumulative distribution function (CDF) of the
Normalization Difference values for both CNN and DenseNet.

a modest smoothness constant, which to certain extent can
endorse the existence of parameter linearity in a theoretical
perspective.

We further calculate the above normalized difference metric
from the original cross-iteration scale to the cross-round scale
for FL. We train the CNN and DenseNet model under a FL
setup, where each round contains 50 iterations. In Fig. 2a
we measure the variation of the normalized difference value
over the entire training process for CNN, and in Fig. 2b we
further show the cumulative distribution function (CDF) of
the normalized difference metric for both CNN and DesNet.
We find that the normalized difference values are even smaller
at such coarser-grained per-round granularity: Fig. 2a suggests
that the normalized difference value for CNN is almost always
smaller than 0.01, and Fig. 2b further shows that more than
90% of the updates have a normalized difference less than
0.005. This is because the gradient fluctuation caused by mini-
batch randomness—when accumulated over multiple iterations
composing a round—is in fact smoothed by a certain extent,
thus rendering the per-round updates even more stable.

In a word, per-round model updates are quite similar across
consecutive rounds in FL. In fact, with a linearity diagnosis
mechanism we will elaborate later (Sec. IV-A), we find that
over 80% parameters exhibit a linear evolution pattern for at
least a half of the total training time (Fig. 7 in Sec. VI-C),
consistent with the sampled trajectories in Fig. 1. Therefore,
by exploiting such linear-pattern for sparsified communication,
we can potentially attain remarkable enhancement in FL
communication efficiency.

B. Insight and Challenges

Motivated by the prevalence of linear parameter updating
pattern, our insight in this paper is to conduct linearity-oriented
gradient sparsification. That is, we keep monitoring the global
parameter updating pattern at runtime; for those parameters
with linear trajectory, we can manually emulate the expected
parameter updating result without conducting realistic gradient
synchronization, so as to reach ideal accuracy performance
with much less communication.

In essential, we need to estimate parameter update prior to
realistic gradient aggregation, in hopes that our estimation is
valid and the communication cost can be saved without any

negative impact; otherwise we have to take special measures
for remediation. This is similar to the famous speculative
execution technique in computer architecture design [15], [16].
To avoid resource wastage in pipelined execution, speculative
execution allows processors to aggressively execute instruc-
tions beyond unresolved branches: the processor uses dynamic
branch prediction to select a likely branch to execute; the
execution results are temporally buffered and later accepted
or revoked after the control dependency is resolved (i.e., valid
branch determined). Given that dynamic branch prediction
is usually highly accurate in practice [23], [24], speculation
can effectively enhance CPU utilization and is nowadays a
cornerstone technique in modern high-performance processors.

We therefore borrow the concept of speculative execution to
FL and propose Federated Learning with Speculative Updating
(FedSU), which deems gradients as the hidden truth to predict,
just like the CPU branch. As long as we can predict the pa-
rameter update at an accuracy high enough, we can effectively
reduce the overall communication volume. To that end, we
limit such prediction to the parameters already exhibiting a
strong linear pattern, whose updating trajectories are likely to
be persistently linear in the near future.

Challenges. Nonetheless, in designing FedSU, we face two
immediate challenges. First, identifying those parameters with
a linear pattern is a non-trivial task for FL given the well-
known resource constraints on typical FL devices. We need
to devise an effective method that can diagnose trajectory
linearity with high efficiency in both time (computation) and
memory consumption. Second, as can be observed in Fig. 1,
linear parameter evolution is only a temporal pattern that may
last for any arbitrary length, suggesting that the predicted
update may diverge from the true one at any time in the midst
of a FL process. To ensure training validity, we need to know
the ground truth on how the gradients would evolve under
standard FL, and leverage it to instruct whether to continue
speculative updating or switch to regular updating at execution
time. We will address such challenges in the next section.

IV. SOLUTION

In this section, we will elaborate the design details of our
proposed FedSU algorithm. In general, the workflow of FedSU
is composed of three parts: first to efficiently identify the
parameters with linear evolution pattern, second to use the
predicted gradient to refine those parameters, and third to
introduce an error-feedback mechanism to ensure convergence
validity. We will respectively elaborate each part, and conclude
this section with the convergence analysis of FedSU.

A. Efficient Identification of Parameters with Strong Linearity

The need for efficient linearity identification. To realize
FedSU, a premier task is to identify the parameters with strong
linear updating pattern at runtime, whose gradients would
then be the spasification target to be exempted from being
synchronized. Specifically, after each round completes, we
need to conduct linearity diagnosis for each parameter based

on its latest value and the historical values (all being post-
synchronization global values). Although sounding straightfor-
ward, it is nonetheless a non-trivial task. For communication
efficiency, the task of linearity diagnosis is located respectively
on each client (feasible because each client share the same
model parameters after synchronization); otherwise the diag-
nosis results have to be transferred from the FL server to each
client, which brings extra communication overhead. However,
the computation and memory resources on FL clients are quite
limited, and we thus need to design an accurate and also
resource-efficient method for linearity diagnosis.

Deficiency of regression-style solutions. For the problem of
linearity diagnosis, a classical method goes to linear regression
analysis [25], [26]: first collect enough historical data in an
observation window, and then fit out the coefficients of a
linear function with the least square method [27]—the sum
of residual error squares working as a quantitative signal of
the linearity level. However, such an intuitive method have
two remarkable deficiencies. First, it is hard to determine the
observation window size. An over-large window may make the
diagnosis misled by out-of-dated data, and an over-small win-
dow is prone to the recent fluctuations caused by factors like
mini-batch randomness, both rendering the diagnosis result
inaccurate. Second, that method requires maintaining plenty
of historical model snapshots in local inventory, incurring
large storage overhead. Meanwhile, it also consumes large
computation power because, to refresh the coefficients, the
least square algorithm must be repeated over the entire window
after each round.

Insight: linearity diagnosis with second-order parameter
differences. To attain accurate and efficient linearity diagnosis,
we propose a regression-free second-order differential method.
We note that, when a parameter exhibits a linear updating
pattern, its gradient value (i.e., first-order parameter differ-
ence) would stabilize around a fixed value; further, the second-
order parameter difference would stabilize (oscillate at the
microscopic level, in fact) around 0. Although mathematically
equivalent, it is however much easier to judge whether a
variable is oscillating around O than to judge whether it is
changing linearly. Intuitively, let {zp_rK11,Tp—K+2,-, Tk}
be the historical values of a (scalar) parameter at round-k (K
is the observation window size), then we can define a metric
called second-order oscillation ratio:

k /
| Zr=k-—K+1 9|
k TR
Er:kaJrl |gr|
where g}, = g —gr—1 is the second-order parameter difference
and g, = x, —x—1 the first-order. When R is close to O (i.e.,

{9} oscillating around 0), we can learn that {g;} is stable
and x is updated under a linear pattern.

R = (1)

Formal solution with the metric of second-order oscillation
ratio. Exempted from the need for linear regression, we further
enhance the above method with the EMA smoothing technique
(so as to avoid relying on the observation window size K).
That is, letting (-), denote the exponential moving average

operation with a decay factor 6, we redefine the second-order
oscillation ratio of a given parameter as:
/
R = |<gk>9‘, where (g1.)o = 0% g1 + (1 —0) x gj..
(lgkl)e

Here (g;)¢ and (|g)|)e are respectively the EMA value of
gy, and |g;.|. With a proper 6 value close to 1, we can well
approximate the effect of window-based smoothing (a smaller
‘R also indicates a higher linearity), yet we have two additional
benefits. First, with 6, we keep decaying the impact of old
values modestly, the diagnosis results being more timely and
accurate. Second, instead of maintaining all the historical
values in the observation window, for each parameter we now
only need to maintain a single value R, thereby remarkably
reducing the memory consumption.

With the above R metric, we can faithfully judge a pa-
rameter as predictable (i.e., updating in a linear manner) if
R < Tr, where T is a predefined threshold close to 0. In
this way (combining second-order difference with EMA), we
can make accurate and efficient linearity diagnosis. We next
elaborate how to conduct communication-efficient FL with this
diagnosis method.

2)

B. Speculative Parameter Updating with Predicted Gradient

After identifying the linearly-updating parameters, we need
to manually approximate the realistic parameter updating
effect without synchronizing them. To that end, we need to
speculatively update the values of those parameters following
the same linearity pattern as before (i.e., with the same slope).
Note that, the gradient value of a linearly-updating parameter
would be stable across different rounds; for such parameters,
we can simply use the update of the last round as the per-
round update to be applied in the future.

Speculative updating dictated by predictability mask. In
particular, as discussed in Sec. III-A, sparsification decisions
shall be made independently for each (scalar) parameter. Given
that existing frameworks like TensorFlow [28] or PyTorch [29]
do not support selective parameter training at such a fine
granularity, we further design a technique called masked
replacement. That is, each client maintains a mask vector
called predictability mask, which is identical across different
clients. Each bit of the predictability mask represents whether
the corresponded parameter is now updated in a linear pattern
(i.e., predictable in our sense) or not. We first refine all the pa-
rameters regularly within a round; for those parameters masked
as predictable, after round completion, we replace their current
value to the predicted one—calculated by persistently applying
the previously-profiled per-round update.

Yet, a remaining problem is that, given that the linear
parameter updating is not an everlasting pattern but occurs
only in interleaved time periods each with an arbitrary length
(as shown in Fig. 1), how do we know the desired time to
terminate speculative updating and switch to regular synchro-
nization? If we persistently enforce linear updating (with no
synchronization), once the linear-updating period in standard
FL setup terminates, the parameter updating trajectory we get

would diverge from the realistic one, compromising the model
training accuracy. Therefore, we need to keep sensing the true
parameter updating trend in reality.

C. Local Error Feedback to Ensure Convergence Validity

To sense the true parameter updating trend, we choose
to leverage the local updating results as a feedback signal.
In the previous design, we simply replace the local value
of each target parameter to the predicted one, regardless
of what the replaced value is. Yet, given factors like mini-
batch randomness and loss function irregularities, the predicted
value is usually not exactly the same with the true value
after synchronization—meaning that there is a non-zero gap
between the two values, which we call prediction error. In fact,
such errors provide valuable information on the true parameter
updating pattern: if the linear pattern persists, that errors would
be caused by mini-batch randomness and exhibit an oscillating
pattern; otherwise, the errors for consecutive rounds would
stably skew to a fixed direction.

Monitoring updating linearity with error feedback signal.
Therefore, we can use the accumulated prediction error to
judge whether the predicted linear pattern persists in reality.
In particular, confronting heterogeneous parameter fluctuation
extents, we set the expected per-round update as the nor-
malization baseline. That is, let {eg41,€x42, ..., x4} denote
the list of prediction errors since speculative updating phase
launches at round k; here e, = g, — gr where g, is the
true gradient if conducting regular synchronization at round
r(r=k+1,k+2..,k+1), and g is the estimated per-
round update used for that phase. Then we calculate

k+1
s [T

3)
|9k |

as the feedback signal. As long as S < Ts where Ts is
a modest threshold to control the error scale, we can deem
that the linear updating pattern holds; otherwise we shall stop
speculative updating and switch to regular updating.

Note that, however, obtaining the above prediction error (e,.)
is not a free lunch. It is well-known that clients in FL differ
in local data distributions [1], meaning that the local error
on a client cannot represent the global one. Therefore, we
have to conduct global synchronization to get the prediction
errors. Obviously, it is unacceptable to keep monitoring the
prediction error after each round, because the communication
cost incurred would counteract the potential communication
savings from spasification. That is, there exists a trade-off
in setting up the error-check frequency: more frequent error
aggregation can yield more timely reaction, but the cost is
larger communication overhead.

We therefore choose a tentative strategy to setup the check-
ing frequency: we assign each predictable parameter with a
no-checking period, and error aggregation is conducted only
after no-checking period expires. Moreover, the no-checking
period of a parameter is adjusted based on the latest feedback

Train for 1 round

A

replace local update by
the predicted one;
accumulate local error

still in
no-checking period

No

check predictability
(linearity)

sync this parameter;
calculate metric R

sync local error;
calculate metric S

increase
Yes no-checking period
by 1 (round)

[| mark as predictable;
set no-checking period to 1 No

mark parameter as unpredictable;
set no-checking period to 0

Fig. 3: Flow chart describing the workflow of FedSU.

signal S: if S is still smaller than Ts, we increase the no-
checking period by one round; otherwise we reset the no-
checking period to 0 and mask that parameter as unpredictable.
In this way, we can effectively reduce the communication
amount without compromising accuracy.

In Fig. 3, we summarize the overall workflow of FedSU.
After each round, clients would check the linearity of each
parameter based on the predictability mask. Those unpre-
dictable parameters would be synchronized normally, after
which we calculate their second-order oscillation ratio and
accordingly update the predictability status (Sec. IV-A). Oth-
erwise, for those predictable parameters within their respective
no-checking period, we update their values based on the
expected gradient without synchronization (Sec. IV-B). In
particular, for those parameters, if the no-checking period
expires after the current round, we would collect their local
errors to update the no-checking period (Sec. IV-C).

D. Convergence Analysis

We further prove that FedSU can ensure convergence valid-
ity for general non-convex DL models. We begin by stating
the smoothness and bounded gradient assumptions:

Assumption 1. (Smoothness) The global loss function F(x)
is B-smooth convex, i.e., |[VF(x) — VF(y)| < Bllx —y]|.

Assumption 2. (Bounded Gradient) During the model training
process, the model gradients are bounded as ||g||* < o2 In
particular, for the j-th (scalar) parameter, its gradient bound

is specifically |g’| < o7, where Zj (07)2 = o2

Inspired by the perturbed iterate framework of [30], we

define a virtual sequence {X;} based on the true sequence?
{xk}: Xo 1= %0, Xp41 = X — M VE (Xk) = X — Nk
Then, we can derive the following theorem:

Theorem 1. (Convergence Property) Under Assumption 1 and
Assumption 2, after running T iterations in FedSU, we have:

1 4(F(x0) — F(x"))
E[||VF(xx)|*] <
Zk 1Mk ;nk) Zf 1Mk 4)
+ (402/82Ts) 25:1 771% + (2025) Ek 177k
>t M >k

Proof. With Assumption 1, we have
F(&ep1) — F(&) < VF(&e)' (Xg1 —Xk) +
5 %1 = %il)* =~ VF ()" i () + 257 [lgn ()]
Taking the expectation at iteration k we have:

E[F (Xky1)] = F (k)
By

< —mVE (%0)"E g (x0)] + 25 [g (x0)|]

2
P (g es)]
T IVE ()l

= —mVF ()" VF (x3) +
Tk -
=—3 IVF (xi)]* -

2
|V (&) ~ VF () P+ B [()]

2
M |« 5
s——nvm I+ 5 % = xul* + E2E |llge ()]

= — 2 (IVF Gl + 82 i — %))

90k g, ()17
<2 (IVF &I + ” e = %)

niBo’
5
Taking the expectation before k, it yields

E[F (%41)] — E[F (%)] < mB%E |1 — %]

meBo® Mg 2 g2 ey O
+ 5 3 [(HVF (Xe)I” + 87 llxk — Xkl)] .
Here, we first focus on E||x; — X||?. For those predictable
parameters, the gap is quantified by Assumption 3; for those
unpredictable parameters updated under vanilla SGD, there is
no expected gap without any FedSU interference. Therefore,
let ko denote the round where the last no-checking period
starts, then we have:

E||xk—s<ku=E<Z|wk—xkl —nkZE\Z 9=
r= k()
(6)

2For simplicity we skip the intra-round updating details and assume that
there is only one iteration in each round. We note that this does not invalidate
our analysis, because a parameter updating linearly when observed at a coarse
time granularity would also follow a linear pattern when observed at a finer
granularity. Our analysis thus also holds for general cases (except that the
bounds in Assumption 1 and Assumption 2 have different scales).

+ B I — Xl +

+ B Ixk — Xl +

Based on the no-checking condition in Eq. 3 and Assump-
tion 2, we further have:

k—1

Elx—%il =Y El Y neel? < Y niT3lgl, 1° < niT50”.

r=ko J
(7

Applying the above inequality to Eq. 5, we have
i

E[F(Xg+1)] 5 ®

~ T E((|VF (R

— E[F(xx)] < nipo® (ne8*T5 +

? + 82([xr — x| *)]-
Then we can obtain

neB[(IVEF (&e)[* + 82|, — %i]*)]

< 2AE[F ()] — E[F(isn)]) + 720”22 4).)

Using the S-smooth property of F'(x), we have

IVF(x¢)||* = [|[VF(xx) — VF(Xz) + VF(x)|?
<2||VF(xx) — VF(Xp)[|* + 2||VF (%) ”
< 2B8%||xp, — %[> + 2||[VF(X)k]

(10)

Combine with Eq. 9, we obtain

B[V F (xi)|[”] < 2mE[B[Jxk — %il* + |V F (%)x]?]

< A(E[F (%i)] — E[F (X+1)]) + 2050° (208275 + ﬂ)-(l N

Summing up the inequalities for k = 1,2, ...,T, we have

> mEIVE(x)II’] < 4(F(x0) — F(x7))

k=1 (12)

T T
+ (40%B°T3) > i + (20°8) > _ 7
k=1 k=1

By dividing the summation of learning rates, we have:

T

zklﬂ,k kzlnkE IV F(xi)|[2] < 4<F<xZoZT—1 i(x*))
+ (40'262T5) Zzzl 77’% (20.26) Zk 177k
25:1 g Zk 11k
O

Theorem 1 implies that model training under FedSU can
converge when 7, satisfies:

T ZT 772
lim an:oo and lim Sk=LTk _), (13)
T—o0 i T—o0 Zk 1 Mk
Therefore, we can set n, = O(%) which satisfies the

conditions in Eq. 13, and the model convergence can be
guaranteed under FedSU.

@
| ® ‘ e oo
Client N
® FedSU ® -
Manager @ Hand over parameter synchronization task to :
{FedSU_Manager i

Local

B Jlocal errors of certain predictable parameters
Training

@ Update those predictable parameters in a
dinear manner :
@ Return full model to the local training process

‘ @ Synchronize the unpredictable parameters &

Client 1

Fig. 4: System architecture with FedSU.

V. IMPLEMENTATION

Overview. As shown in Fig. 4, we have implemented FedSU
with a Python module named FedSU_Manager, which
wraps up all our FedSU algorithm details and makes them
transparent to end users. Algorithm 1 summarizes the main
workflow of FedSU. After each round, FL clients only need
to call FedSU_Manager.sync () for model synchroniza-
tion. FedSU_Manager maintains the predictability mask
(Mpregictable) as well as the no-checking mask (Myo_checks
which can be derived from the no-checking period) for each
parameter, and further uses them to decide whether to conduct
realistic transmission (following the workflow described in
Fig. 3). Note that to avoid incurring extra communication cost,
each client maintains its own copy of the two masks (identical
across different clients since they are calculated from global
parameters). Here the remote communication is conducted via
RPyC (Remote Python Call) [31].

Handling system dynamicity. Note that in realistic FL scenar-
ios, the clients may dynamically join or leave the FL process
at any time. To ensure that FedSU can work smoothly against
such participant dynamicity, for each new participant just
joining the FL process, we let it download—besides the latest
model—also the latest predictability mask and no-checking
period information.

Complexity analysis. Typical edge devices for FL bear poor
hardware capability, and we need to ensure that our FedSU
implementation is resource efficient. Regarding the computa-
tion complexity, for each parameter the operations required to
conduct linearity diagnosis and error feedback are both con-
stant. Meanwhile, the additional memory overheads incurred
by FedSU (i.e., the predictability mask and the local error) are
proportional to the model size (acceptable because the model
itself only consumes a small portion of the total memory—
which is mostly consumed by the input data, feature-map and
optimizer status [32]). That is, both the computation and space
complexity can be captured by O(]x|). We will further evaluate
the overhead of FedSU in Sec. VI-F.

VI. EVALUATION

In this section, we systematically evaluate the performance
of our FedSU algorithm. We first conduct an end-to-end
performance comparison of FedSU, and then demonstrate the

Algorithm 1 FedSU Workflow

Require: F;,Tr,Ts

Client: : =1,2,..., N:
1: procedure CLIENTITERATE(k)

> Fs: the number of iterations in a round

2: X}; — X — N8 > conduct regular local update
3: if £ mod F, = 0 then
4: X}, < FedSU_Manager.SYNC(x},)

Central_Server:

1: procedure AGGREGATE_MODEL(x}, ..., X}’)
2 return - SV x
N 2ui=1Xk
3: procedure AGGREGATE_ERROR(e}, ..., eL)
4 return = YN e
N 2ui=1Ck
FedSU_Manager:
Init: e = 0, Mprediclable =0, Mno_check =0
1: procedure SYNC(X)
2: X x.masked_select(ﬁ predictable) D> X: parameters

that are updated in a non-linear (unpredictable) manner
3: X + Central_Server.AGGREGATE_MODEL(X)
X < x.masked_f ill(—\ predictable s)A() > restore full size
e < e+ (x — %X).masked_select(— Mo check) > X is
the parameter value if all refined following the linear pattern
e <+ Central_Server.AGGREGATE_ERROR(e)
e < (x — X).masked_£fill(—
X Mpredictable?ﬁ 'X
with e, calculate S for checked parameters and update
M heek and Mpregictable based on T's (following Fig. 3)
10: with X, calculate R for unpredictable parameters and
update Mpredictable based on Tz (following Fig. 3)
11: return x

AN

no_check e)

© L 3D

stability of our algorithm through sensitivity analysis and
ablation studies, assessing the role and importance of each
component of the algorithm. Finally, we present an evaluation
of the overhead associated with the FedSU algorithm.

A. Experimental Setup

Hardware setup. We build an EC2 cluster with 128
c6i.large instances and one c5a.8xlarge instance.
Each c6i.large instance has 2 vCPUs and 4GB RAM
(similar to a smart phone), working as a FL client. Following
the average network condition of FedScale [33]—a compre-
hensive FL benchmark including real-world mobile device
measurements, we set the link bandwidth of each client to
13.7 Mbps (with the wondershaper [34] tool). Meanwhile, the
c5a.8xlarge instance—with 32 vCPUs, 64GB RAM and
10 Gbps link bandwidth—works as the FL server. Meanwhile,
to emulate participation dynamicity, in each round, we collect
70% of the clients returned the earliest.

Training Setup. The datasets we use in our experiment are
EMNIST [35], FMNIST (Fashion-MNIST) [36] and CIFAR-
10 [37]. In particular, to simulate non-IID data settings, we
generated the local dataset distribution for each client based on
a Dirichlet distribution [38]. The Dirichlet distribution controls

TABLE I: Time to reach the target accuracy for each model, together
with the per-round time and number of rounds required.

Model Scheme Per-round Time (s) # of Rounds Total Time (h)
FedSU 7.23 264 0.53
CNN APF 12.04 265 0.89
(0.60) CMFL 13.05 248 0.90
FedAvg 15.05 273 0.91
FedSU 40.36 96 1.08
DenseNet APF 50.46 108 1.51
(0.65) CMFL 55.57 96 1.48
FedAvg 60.34 174 2.92
FedSU 109.19 283 8.58
ResNet-18 APF 144.96 379 15.26
(0.85) CMFL 145.38 379 15.31
FedAvg 150.39 381 15.92

the concentration parameter « for the combination of label
classes (o« — oo indicates IID data, while o« = 0O indicates
that the dataset on each client contains only one label class).
Specifically, we set o = 1 for each client, emulating a modest?
non-IID level. With the EMNIST dataset we train a CNN [41]
model with two convolutional layers (kernel size 5 x 5) and
two fully-connected layers; with the FMINIST dataset we train
the ResNet-18 [42] model; with the CIFAR-10 dataset we
train the DesNet-121 [43] model. These models all adopt the
SGD optimizer, with the learning rate respectively set to 0.01,
0.001, and 0.01. The weight decay coefficient is 0.001 for each
model. Meanwhile, the batch size of each iteration is 32 and
each round has 50 iterations.

Algorithm Setup. With the above hardware and workload
setup, we evaluate four algorithms: FedAvg, CMFL, APF
and FedSU. FedAvg conducts full-model synchronization,
and CMFL [11] and APF [12] are two typical sparsification
algorithms previously introduced in Sec. II-B. In CMFL, we
set the relevance threshold to the default value 0.8, meaning
that updates with less-than-80% identical directions with the
global one will not be transmitted. In APF, we set the stability
threshold (used to eliminate the parameters that have already
converged from transmission) to the default value 0.05. In our
FedSU setup, we set the predictability threshold (7T) and the
error-feedback threshold (7’s) respectively to 0.01 and 1.0.

B. End-to-End Performance

In Fig. 5, we show the time-to-accuracy curves of the three
models under the four schemes above, accompanied by the
communication compression ratio respectively under APF and
FedSU. From Fig. 5, we can learn that FedSU can always
make the most rapid accuracy improvement. In particular,
Fig. 5 also shows that FedSU can attain a much higher
communication compression ratio than APF. For example,
when training the ResNet model, the average sparsification
ratio under FedSU is 71.7%, whereas under APF that ratio is

3Tt is known that the model accuracy of FL would degrade under higher
non-IID level [39]; our objective with FedSU is to reduce the communication
amount while preserving (instead of improving) the training accuracy, thus
we choose a typical non-IID level. That said, FedSU can be integrated with
those methods aiming to enhancing FL accuracy over non-IID data (e.g., by
changing the optimization function [40] or by data compensation [39]).

—— CMFL

o

Sparsification Ratio

3

| e
= 0.6 0.6

2
SRS
Sparsification Ratio

o
e
o

to

—— FedSU —=— APF
0.8 = 0.8 o 0.8 =7
f o = N ‘g
"‘, . ‘5 ; .
507 kY o~ 0.6~ .
£ \ g B
506 045 5.
3 Q Q
2 | < E
0.51! 022
’ =
A -l o) |
04 b - ()() ‘
1 ; :

Time (hours)
(a) CNN

10

Time (hours)
(b) DenseNet

0.0

0.0

20 13 19

Time (hours)
(c) ResNet-18

15 26

Fig. 5: Instantaneous time-to-accuracy curves when training CNN, DenseNet and ResNet-18 under different schemes. For APF and FedSU
we also depict the instantaneous communication compression ratio (sparsification ratio) in dashed lines.

x10”

ki

450

500 550 600
Round Index

(a) CNN

300 325 350 375

Round Index

(b) DenseNet

400

Fig. 6: Parameter evolution trajectories for a randomly-sampled parameter under FedSU as well as
with regular synchronization like under FedAvg. Green dots and red crosses respectively represent

the start and end points of the linear-updating periods of FedSU.

only 21.3%. This is consistent with our analysis in Sec. II-B:
FedSU can exhaustively exploit the linear parameter evolution
pattern for sparsified communication, of which the (static)
converged pattern exploited by APF is only a special case.

We further resort to Table I to quantitatively compare the
performance of FedSU against others. We first set a near-
optimal accuracy target for the three models (0.6 for CNN,
0.65 for DenseNet, and 0.85 for ResNet-18), and then record
the time required to reach such accuracy targets under the
four schemes, accompanied with the number of rounds and
the average per-round time. According to Table I, FedSU can
substantially reduce the model training time of FL. Compared
with the second-best scheme (APF), FedSU can attain a
respective training speedup of 40.4%, 28.9% and 43.8% for
the three models. In particular, for each model, the number
of rounds required to reach the target accuracy under FedSU
is similar* with that under FedAvg; we can thus confirm
that the statistical (accuracy) performance of FedSU is not
compromised by sparsification.

C. Microscopic Study

To better understand the performance benefit of FedSU, we
further dive deep into the microscopic parameter trajectories
during the FL training process. In Fig. 6, for each model,
we depict the parameter evolution trajectories of a randomly-
selected parameter during a randomly-selected period under
FedSU—accompanied by the parameter trajectories during the

4For the DenseNet model, our convergence speed in terms of the round
number is even better than FedAvg. This is because we can avoid overfitting
by updating with the predicted gradient and thus attain better generalization
performance—a phenomena that also appeared in APF [12].

alue

>

Param

-2.50
=2.75
—3.00
—3.25
—3.50

-3.75
—e— ResNet
—=— CNN

—— DenseNet

—4.00

0.0

350

400 450 500
Round Index

(c) ResNet-18

550

0.00 0.25 0.50 0.75

Predictable Ratio

1.00

Fig. 7: Cumulative Distribution
Function (CDF) of the predictable
(linearly-updating) ratio when
training the three models.

same period if regular synchronizations are conducted like
under FedAvg. As shown by Fig. 6, the parameter trajectories
under our proposed FedSU algorithm can well approximate
the vanilla ones under FedAvg. On the one hand, FedSU can
accurately identify the training periods with strong updating
linearity—thus attaining salient communication reduction; on
the other hand, once such period expires, FedSU can swiftly
sense that and switch to regular updating mode—thus with no
hurt on the training accuracy.

We further resort to Fig. 7 to depict the overall linearity level
(as diagnosed by FedSU) of all the parameters during the entire
training process. We collect the proportions of diagnosed-as-
linear periods for each parameter, and depict the cumulative
distribution function (CDF) of such proportions over all the
parameters of each model. Fig. 6 shows that a large portion
of parameters have strong linearity during training: more than
80% parameters exhibit the linear pattern in more than a half
of the model training time. This echos our previous motivating
explorations in Sec. III-A and also corroborates the remarkable
performance benefit of FedSU in Fig. 5.

D. Ablation Study

Note that our FedSU algorithm switches between normal
updating and speculative updating based on two diagnoses:
starting speculative updating when the linearity metric R
decreases below a threshold (T’z), and terminating it when
the error metric S increases above a threshold (7's). Given the
strong similarity between consecutive updates (as indicated in
Fig. 2), we need to make it clear whether the two mechanisms
are indeed indispensable. We then build two FedSU variants:
FedSU-v1 (with linearity diagnosis but without error feedback)

0.7 1.0 0.7

% =)

Accuracy
P
G
%
Ratio
Accuracy
=3 =
G >
S

2
Sparsification Ratio

041}

S
=

1 L FefSUet02
e m oS Uy]
¥ FedSU-v2

5

—=— FedSU-v1
FedSU-v2

. 0.0
03 1 74 5 o

2
Round (x100)
(b) DenseNet

0.3

2 3 4 5 6
Round (x100)

(a) CNN
Fig. 8: Ablation experiments with FedSU, FedSU-v1 (with linearity

diagnosis but without error feedback) and FedSU-v2 (with neither
linearity diagnosis nor error feedback).

08— 1.0 0.8

1.0

10.8.2

%

Sparsification Ratio

e
9

0.6 §

Accuracy
>
2
Sparsification Rat

Accuracy

=4
n
o

044

2 3 4
Round (x200)

(b) DenseNet

2 3
Round (%x200)
(a) CNN

Fig. 9: FedSU performance with different linearity diagnosis thresh-
olds (T'r). The dashed lines show the sparsification ratio.

and FedSU-v2 (adopting neither linearity diagnosis nor error
feedback). In FedSU-vl, for parameters diagnosed with a
linear pattern, speculative updating would be conducted for
a fixed period without error feedback; in FedSU-v2, each
parameter randomly enters speculative updating with a preset
probability, and the speculative updating period is also fixed.

In Fig. 8, we compare® FedSU with the two variants when
training CNN and DenseNet models. The fixed speculative
updating period and launching probability are respectively set
to 43 (58) and 0.53% (0.81%) for CNN (DenseNet), following
our measurements under standard FedSU. As shown in Fig. §,
the sparsification ratio curves of FedSU-vl are in general
remarkably lower than those of standard FedSU, and the
accuracy curves are also slower (especially for DenseNet).
Therefore, to fully exploit the communication compression
opportunities without accuracy loss, we do need the error
feedback mechanism in setting up the speculative updating
period. Further, if we step forward by removing the linearity
diagnosis, the accuracy performance would be substantially
impacted: in Fig. 8, the accuracy curves of FedSU-v2 fluctuate
drastically, much worse than those of FedSU. This confirms
that speculative updating should be enforced only for those
parameters with a strong linearity.

E. Sensitivity Analysis

Note that there are two key hyper-parameters in FedSU:
T'r (linearity checking threshold introduced in Sec. IV-A) and
Ts (error feedback threshold described in Sec. IV-C). Here we

SFor simplicity and also due to space limitation, in our later experiments on
ablation study and sensitivity analysis, we focus on the CNN and DenseNet
model, and the general conclusions also hold for the ResNet model.

P >~
g] 08
5 506 =
|5 Q Q
o Q 4=
< < 4E
—— Ts=lel 5
—_ Ts=1 04 ;‘l
—— T5=10
—— Ts=100
029 i 73 & ™ 02 2 3 4
Round (x200) Round (x200)
(a) CNN (b) DenseNet

Fig. 10: FedSU performance with different error-feedback thresholds
(T's). The dashed lines show the sparsification ratio of each case.

explore how the two thresholds affect the FedSU performance,
and the models we use are also CNN and DenseNet. In
Fig. 9, we showcase the FedSU performance under different
Tk values from 0.1 to 0.0001. From Fig. 9, we learn that the
communication speedup from FedSU would be larger with a
looser T’z threshold. Meanwhile, changing the T’z threshold
does not significantly impact the accuracy performance of
FedSU—thanks to the error feedback mechanism. That said,
an over-large threshold (T’ = 0.1) does lead to a slight
accuracy degradation; our default setup T’z = 0.01 can yield
large communication speedup without accuracy loss.

In Fig. 10, we set the Ts threshold to four different
values ranging from 0.1 to 100. Regarding the communication
reduction effect, we find that the general trend resembles that
of T’z the looser the threshold, the larger the communication
speedup. Yet, we note that the training accuracy would dete-
riorate significantly under an improper T's threshold: there is
an accuracy loss of over 20% if setting Ts to 100. This is
reasonable because Ts is a key hyper-parameter that directly
bounds the accumulated gradient error brought by FedSU.

FE. Overhead Analysis

TABLE II: The computation and memory overheads of FedSU.

Model CNN DenseNet ResNet-18
Computation Time Inflation 0.034 s 0.916 s 1.258 s
Computation Time Inflation Ratio 0.47% 2.15% 1.01%
Memory Inflation 65 MB 70 MB 128 MB
Memory Inflation Ratio 3.75% 2.68% 8.27%

We further check the computation and memory overheads
of FedSU. As explained in Sec. V, both the computation and
memory overhead of FedSU are quite limited. In Table II,
we measure the increase in per-round time and memory con-
sumption after adopting FedSU. It shows that the computation
time inflation ratio is always less than 2.15%, and the memory
inflation ratio is also rather limited (less than 10%). In sum, the
memory and computation overheads of FedSU are acceptable
when compared with its performance benefit.

VII. CONCLUSION

In this work, we devise FedSU, a novel approach to mitigate
the communication overhead in federated learning. Motivated
by the observation that model parameters often exhibit a
linear evolution pattern during the training process, FedSU can
efficiently identify the linearly-updating parameters and use
the predicted updates for model refinement without conduct-
ing realistic synchronization. To ensure convergence validity,
FedSU further incorporates an error-feedback mechanism to
timely react to the instantaneous training status. Extensive
experiments confirm that FedSU can substantially reduce the
communication volume without accuracy degradation.

ACKNOWLEDGEMENT

The research was supported in part by the National Natural
Science Fundation of China (NSFC) grant 62202300, a RGC
RIF grant under contract R6021-20, RGC TRS grant under
contract T43-513/23N-2, RGC CRF grants under contracts
C7004-22G, C1029-22G and C6015-23G, and RGC GRF
grants under contracts 16200221, 16207922 and 16207423.
Chen Chen is the corresponding author.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in PMLR AISTATS, 2017.

[3] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on
federated learning,” Knowledge-Based Systems, vol. 216, p. 106775,
2021.

[4] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in neural information processing systems, vol. 30, 2017.

[5] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in PMLR AISTATS, 2020.

[6] D. Jhunjhunwala, A. Gadhikar, G. Joshi, and Y. C. Eldar, “Adaptive
quantization of model updates for communication-efficient federated
learning,” in IEEE ICASSP, 2021.

[71 T. Vogels, S. P. Karimireddy, and M. Jaggi, “Powersgd: Practical low-
rank gradient compression for distributed optimization,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[8] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An Efficient Communication Archi-
tecture for Distributed Deep Learning on GPU Clusters,” in USENIX
ATC, 2017.

[9]1 D. Yu, H. Zhang, W. Chen, J. Yin, and T.-Y. Liu, “Large scale private

learning via low-rank reparametrization,” in PMLR ICML, 2021.

K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,

P. B. Gibbons, and O. Mutlu, “Gaia:geo-distributed machine learning

approaching LAN speeds,” in USENIX NSDI, 2017.

W. Luping, W. Wei, and L. Bo, “Cmfl: Mitigating communication

overhead for federated learning,” in JEEE ICDCS, 2019.

C. Chen, H. Xu, W. Wang, B. Li, B. Li, L. Chen, and G. Zhang,

“Communication-efficient federated learning with adaptive parameter

freezing,” in IEEE ICDCS, 2021.

M. Ye, W. Shen, E. Snezhko, V. Kovalev, P. C. Yuen, and B. Du, “Vertical

federated learning for effectiveness, security, applicability: A survey,”

arXiv preprint arXiv:2405.17495, 2024.

J. Wu, S. Drew, and J. Zhou, “Fedle: Federated learning client selection

with lifespan extension for edge iot networks,” in /EEE ICC, 2023.

J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-

tive approach. Elsevier, 2011.

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]
(32]

(33]

(34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

A. Kejariwal, X. Tian, M. Girkar, W. Li, S. Kozhukhov, U. Banerjee,
A. Nicolau, A. V. Veidenbaum, and C. D. Polychronopoulos, “Tight
analysis of the performance potential of thread speculation using spec
cpu 2006,” in ACM PPoPP, 2007.

T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ram-
age, and F. Beaufays, “Applied federated learning: Improving google
keyboard query suggestions,” arXiv preprint arXiv:1812.02903, 2018.
“Global Internet Condition (2019).” https://www.atlasandboots.com/
remote-jobs/countries- with- the-fastest-internet-in- the- world.

Z. Gan, C. Chen, J. Zhang, G. Zeng, Y. Zhu, J. Zhao, Q. Chen, and
M. Guo, “PAS: Towards Accurate and Efficient Federated Learning with
Parameter-Adaptive Synchronization,” in /WQoS, 2024.

L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy,
“Parameter hub: a rack-scale parameter server for distributed deep neural
network training,” in ACM SoCC, 2018.

F. Liang, Z. Zhang, H. Lu, V. Leung, Y. Guo, and X. Hu,
“Communication-efficient large-scale distributed deep learning: A com-
prehensive survey,” arXiv preprint arXiv:2404.06114, 2024.

Z. Gan, C. Chen, J. Zhang, G. Zeng, Y. Zhu, J. Zhao, Q. Chen, and
M. Guo, “Pas: Towards accurate and efficient federated learning with
parameter-adaptive synchronization,” in IEEE IWQoS, 2024.

D. A. Jiménez and C. Lin, “Neural methods for dynamic branch
prediction,” ACM TOCS, vol. 20, no. 4, pp. 369-397, 2002.

B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer,
and B. Zorn, “Evidence-based static branch prediction using machine
learning,” ACM TOPLAS, vol. 19, no. 1, pp. 188-222, 1997.

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear
regression analysis. John Wiley & Sons, 2021.

G. A. Seber and A. J. Lee, Linear regression analysis.
Sons, 2012.

A. Bjorck, “Least squares methods,” Handbook of numerical analysis,
vol. 1, pp. 465-652, 1990.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning,” in USENIX OSDI, 2016.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” NeurIPS,
vol. 32, 2019.

H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and
M. 1. Jordan, “Perturbed iterate analysis for asynchronous stochastic
optimization,” SIAM Journal on Optimization, vol. 27, no. 4, pp. 2202—
2229, 2017.

“RPyC,” https://rpyc.readthedocs.io/en/latest/.

M. Rhu, N. Gimelshein, J. Clemons, A. Zulfigar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in IEEE MICRO, 2016.

F. Lai, Y. Dai, S. Singapuram, J. Liu, X. Zhu, H. Madhyastha, and
M. Chowdhury, “Fedscale: Benchmarking model and system perfor-
mance of federated learning at scale,” in PMLR ICML, 2022.
“wondershaper,” https://github.com/magnificO/wondershaper, 2020.

G. Cohen, S. Afshar, J. Tapson, and A. e van Schaik, “Emnist: an
extension of mnist to handwritten,” Proceedings of the IEEE, vol. 4322,
2017.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” arXiv
preprint arXiv:1909.06335, 2019.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429-450, 2020.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in IEEE CVPR, 2017.

John Wiley &

https://www.atlasandboots.com/remote-jobs/countries-with-the-fastest-internet-in-the-world
https://www.atlasandboots.com/remote-jobs/countries-with-the-fastest-internet-in-the-world
https://rpyc.readthedocs.io/en/latest/
https://github.com/magnific0/wondershaper

	Introduction
	Background
	Federated Learning Basics
	Prior Arts and Their Limitations

	Motivation
	Prevalence of Linear Parameter Evolution Pattern
	Insight and Challenges

	Solution
	Efficient Identification of Parameters with Strong Linearity
	Speculative Parameter Updating with Predicted Gradient
	Local Error Feedback to Ensure Convergence Validity
	Convergence Analysis

	Implementation
	Evaluation
	Experimental Setup
	End-to-End Performance
	Microscopic Study
	Ablation Study
	Sensitivity Analysis
	Overhead Analysis

	Conclusion
	References

