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Abstract—Utilizing compound Large Language Model (LLM)
systems, instead of a monolithic LLM model, is gradually becom-
ing a practical solution to realize a diverse range of industry ap-
plications. In compound LLM systems, an LLM collaborates with
other external tools, APIs, or LLMs to offer intelligent services.
In this poster, we identify the unique challenges, namely temporal
and topological uncertainty, brought about by compound LLM
systems in system serving. We then propose a priority-based
scheduling policy to schedule different stages in DAG-represented
compound LLM systems. The preliminary results show promising
performance of uncertainty-aware scheduling policies.

Index Terms—Large language model, job scheduling, uncer-
tainty

I. INTRODUCTION

While Large Language Models (LLMs) have showcased
promising potential and capabilities in performing various
natural language tasks, such as question answering and trans-
lation, they encounter limitations when providing high-quality
solutions to domain-specific queries in practical settings. Con-
sequently, there is a noticeable trend towards transitioning
from monolithic models to compound LLM systems. In these
systems, LLMs collaborate with other external models, tools,
APIs, retrievals, or even other LLMs to meet the demands of
practical intelligent applications.

Researchers have explored leveraging LLM either as task
planners, actual executors, or both, in collaboration with other
components. For instance, TaskMatrix [1] employs an LLM
to comprehend goals and context through analysis of users’
natural language input. It then generates executable code to
select and invoke appropriate APIs for accomplishing various
tasks. Similarly, OptiGuide [2] utilizes an LLM to translate
user queries from natural language into optimization problems
that can be tackled by existing solvers. The solver results are
then fed back to the LLM to produce user-friendly reports.

In the industry, our industry co-author has also discovered
that users generally prefer compound LLM systems over single
monolithic models. This preference stems from several prac-
tical reasons: (1) Performance issues. Industrial applications
often rely on domain-specific proprietary solvers or simulation
tools. Fine-tuning an LLM to match the performance of
these proprietary tools remains a challenge. (2) Trust and
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Fig. 1: (a) Length distribution of code generation application
(b) Distribution of the number of generated stages of task
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management issues. Unlike the explicit physics mechanisms
embedded in existing tools, the generative nature of LLMs
and the possibility of hallucination diminish users’ trust in
these systems. (3) Cost issues. The on-site computing costs
and engineering investment, including data cleaning and QA
pair preparation, required for training a satisfactory LLM are
substantial for users.

To effectively serve diverse compound LLLM system running
requests, it is common practice to represent each component,
including the LLM, and their relationships in a compound
LLM system as a directed acyclic graph (DAG) following
the conventional cluster serving framework. However, running
scheduling algorithms in such systems typically requires infor-
mation about the DAG topology and task durations, which may
be inaccessible in compound LLM systems. As a result, ex-
isting algorithms, originally designed for conventional model
inference tasks and big data analytics tasks, become inadequate
when dealing with the uncertainty in topological structure and
execution duration inherent in compound LLM systems.

This poster takes the initiative to address the unique chal-
lenge posed to system serving by the emerging compound
LLM systems. We propose a simple yet effective priority-
based scheduling algorithm to manage a variety of com-
pound LLM requests. We then evaluate the performance of
our scheduling policy through testbed implementations and
demonstrate promising results in job completion time.
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II. MEASUREMENT AND MOTIVATION

We first conduct a preliminary measurement to demon-
strate the topological uncertainty in compound LLM systems.
Our measurement is conducted on a Ubuntu 20.4 machine
with an NVIDIA A800 GPU card. For the LLM model,
we employ Llama2-7B [3], recognized as one of the top-
performing open-source LLMs during our experimentation.
We choose two representative compound LLM applications:
(1) Code generation with AutoGen [4] using HumanEval [5]
benchmark: This application uses LLM to generate and refine
the code iteratively for a given task. The workflow involves
sequential stages of code evaluation and LLM inference. (2)
Task automation with HuggingGPT [6] using TaskBench [7]
benchmark. This application takes a user’s request and asks
the LLM to generate a workflow consisting of available tools
to fulfill the user’s request.

Fig. 1a shows the distribution of the lengths of workflows in
code generation applications. We can see that the length shows
great uncertainty, ranging from 1 to 20. Fig. 1b shows the
diverse number of stages in the workflow generated by LLM
in the task automation application. The measurement results
reveal that compound LLM systems exhibit diverse topological
patterns in practice. Moreover, it’s noted that certain workflows
are not pre-determined but rather iteratively generated by the
LLM. This uncertainty, coupled with the variability in LLM
execution as discussed in prior studies [8], poses significant
challenges to the applicability of existing scheduling policies.

III. DESIGN AND EVALUATION
A. Priority-based scheduling

In addition to our previously implemented applications, we
introduce another compound LLM-based sorting application,
comprising four LLMs utilizing the Graph of Thought (GoT)
framework [9]. We then propose a simple priority-based
scheduling policy that incorporates awareness of uncertainty
to enhance performance. This priority-based policy, named
PS-TCS, predefines a preference order for different applica-
tions (Task automation > Code generation > Sorting) and
prioritizes stages accordingly during scheduling. The rationale
behind this policy lies in the increasing DAG topological
uncertainty across applications, progressing from sorting with
a fixed predetermined DAG to task automation where the DAG
is unknown beforehand and only revealed after running the
task planner stage.

B. Preliminary results

To evaluate the performance of different DAG scheduling
algorithms, we build a simple simulator based on the measure-
ment results. The simulator simulates the cloud environment
for serving heterogeneous compound LLM applications with
different numbers of regular executors and LLM executors.
Regular executors are dedicated to executing tasks like code
generation, while LLM executors handle LLM inference re-
quests. With the simulated environments, we randomly gener-
ate 500 compound LLM requests in equal proportion for three
applications using their corresponding benchmark. The arrival

TABLE I: Average JCT of Different Scheduling Polices

Method R=10, L=10 R=20, L=20 R=30, L=30 R=40, L=40
FCFS 893 347 155 87
RS 812 298 143 87
PS-TCS 474 197 119 86

of each request for applications follows a Poisson distribution.
We compare the performance with First Come First Serve
(FCFS) and Random Scheduling (RS). FCFS prioritizes the
stages of the application that come first. RS randomly selects
stages for scheduling regardless of their arrival time or the
belonged application. The average job completion time (JCT)
is recorded. We change the resource settings, i.e., the number
of LLM executors (L) and Regular executors (R) from 10 to
40, and evaluate the performance of these scheduling policies.
The results are shown in Table I. We can see that the priority-
based method PS-TCS achieves the best performance under
different resource settings. It reduces job completion by up to
47% compared to traditional methods like FCFS and RS.

IV. CONCLUSION

We explore the compound LLM system serving problem,
where each request involves various LLMs and external tools.
We highlight the topological uncertainty in compound LLM
systems and its impact on existing cluster schedulers. Using
a simple yet effective priority-based scheduling policy, we
demonstrate the potential of integrating uncertainty for per-
formance improvement. These initial findings suggest the need
for new job scheduling systems and call for fresh abstraction
frameworks tailored to compound LLM systems.
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