
PAS: Towards Accurate and Efficient Federated
Learning with Parameter-Adaptive Synchronization

Zuo Gan1, Chen Chen1, Jiayi Zhang1, Gaoxiong Zeng2∗, Yifei Zhu1, Jieru Zhao1, Quan Chen1, Minyi Guo1

1Shanghai Jiao Tong University 2Huawei

Abstract—Federated Learning (FL) is a distributed paradigm
that supports collaborated model training while preserving data
privacy, where clients periodically synchronize their local gra-
dients once after multiple local iterations. Due to non-uniform
data distribution and poor network condition, FL processes often
suffer degraded training accuracy and efficiency. In this work,
we analyze the microscopic parameter variation behaviors in
FL, and find that an effective method to improve FL accuracy is
to switch to more frequent synchronization at proper moments.
Moreover, such moments can be detected from gradient char-
acteristics, and are heterogeneous across different parameters.
Motivated by such observations, we propose Parameter-Adaptive
Synchronization (PAS), a FL scheme that adaptively tunes the
synchronization period for each scalar parameter. The benefits of
PAS are two-fold: By switching to more frequent synchronization
when necessary, we can improve the FL training accuracy;
by synchronizing different parameters independently, we can
enable communication-computation overlapping and enhance the
network utilization. We implemented PAS atop PyTorch, and
extensive experiments show that it can substantially improve FL
performance in both accuracy and communication efficiency.

I. INTRODUCTION

In recent years, Federated Learning (FL) [1], [2] is booming
as an effective technique that allows multiple clients (e.g.,
mobile devices) to jointly train a machine learning model
without disclosing their local private data. In typical FL
scenarios, the network connection between the edge devices
and the FL server is often of low quality; to improve training
efficiency, FedAvg [2] has become the de facto client coordi-
nation mechanism for FL. Under FedAvg, each client pulls the
latest model and trains it for multiple local iterations before
reporting the updates, which procedure is called a round.

While FL has proven effective for a series of real-world
scenarios [3], [4], [5], it has long been plagued with two kinds
of challenges: statistical challenge (non-IID data) and system
challenge (incapable hardware resources). Due to the privacy
constraints, the local datasets on different FL clients are often
of heterogeneous distributions, which may severely hurt the
training accuracy [6], [7]. Both existing works [2], [6], [8]
and our empirical study show that model accuracy would be
lower with less frequent synchronization. Meanwhile, model
synchronization over low-bandwidth connections is a severe
bottleneck for FL [9], [10], and more frequent synchronization
would increase the communication delay. Therefore, there is
a trade-off in setting up the synchronization period (i.e., the
number of local iterations in each round).

∗This is non-Huawei achievement.

Our objective here is to jointly improve the accuracy and
efficiency of FL. While existing works [11], [12], [13], [14],
[15], [9] have explored how to tune the accuracy-efficiency
trade-off by properly setting up the synchronization period,
they implicitly assume that all the model parameters be
synchronized at the same pace—parameter synchronization
can only be kicked off after the completion of all the local
iterations in each round. However, it remains largely uncharted
whether different parameters of a model do need heteroge-
neous synchronization periods, and a fixed setup may be too
rigid, yielding compromised accuracy and efficiency.

In this work, we study the impact of FL synchronization
period on the parameter updating process, seeking to quanti-
tatively understand the preference of an individual parameter
on the synchronization period setup. Note that to behave well
in both accuracy and efficiency, a practical strategy is to
dynamically tuning the synchronization frequency at runtime.
By making fine-grained analysis on the variation of each
parameter during the FL process, we find a phenomena called
gradient bifurcation that can signal the appropriate frequency
tuning moment of each parameter. Most importantly, such
frequency-tuning moments are heterogeneous among different
parameters (even for those in the same layer), suggesting that
we need to independently tune the synchronization period for
each parameter.

Motivated by the above study, in this paper we propose a
FL scheme called Parameter-Adaptive Synchronization (PAS),
which works by adaptively tuning the synchronization period
at the per-parameter (scalar) granularity. Compared with ex-
iting frequency setting up strategies, PAS has two distinct
advantages. First, fine-grained frequency control can attain
better adaptivity and improve the training accuracy. Second, by
starting synchronizing different parameters at different times,
PAS can overlap the communication of some parameters with
the computation of the others, which is a novel inter-iteration
communication-computation overlapping technique for FL that
can effectively mitigate the network bottleneck.

To realize PAS, an immediate question is how to tune the
synchronization period of each parameter. Based on gradient
characteristics, we propose a metric called Gradient Consistent
Rate, which can quantify the level of gradient bifurcation in
a practical manner. To be specific, we adopt the exponential
moving average method to handle mini-batch randomness, and
we also adopt the pooling method to tackle the issue of large-
scale yet dynamic client participation. Based on that metric,
we devise a simple yet effective heuristic: Once the gradient

consistent rate of a parameter stabilizes around zero (indicating
maximized gradient bifurcation level), we scale down that
parameter’s synchronization period by a predefined constant.

Meanwhile, in the engineering aspect, we note that spe-
cial PAS designs are needed to guarantee communication
speedup. If we synchronize each parameter independently,
the parameters with shorter synchronization periods would be
synchronized for more times until all the other parameters
converge. That is, although communication can be overlapped
with computation, the total transmission amount is nonethe-
less increased, canceling out the potential communication
benefit. To tackle that, we propose Eager Synchronization
with Uniform Round Pace: Eagerly aggregate the updates for
parameters with shorter synchronization periods, and after
aggregation, let those early-bird parameters wait for the others
instead of directly proceed to the next round. In this way,
we can avoid inflating the total communication amount and
guarantee the improvement on training efficiency.

We have implemented PAS atop PyTorch, and have con-
ducted experiments on a 100-node EC2 cluster emulating real-
istic FL scenarios. The results confirm that PAS can effectively
improve FL in both accuracy and efficiency. For example, after
training LSTM for 6 hours, the model accuracy with PAS is
12.25% higher than FedAvg and 6.50% higher than the second
best strategy. Meanwhile, when training ResNet-20, PAS can
speed up the completion of each round by over 50%. We
also confirm that the performance of PAS is robust to hyper-
parameter variations, and the overhead it incurs is negligible
compared to the performance benefits.

II. RESEARCH BACKGROUND

A. The Basics of Federated Learning
Federated Learning (FL) [1], [2] is a special form of

distributed model training that places data privacy at the first
priority. It allows clients to refine a model copy locally and
aggregate the updates (instead of the data samples) to the
central server. The network capacity of typical FL clients
(e.g., IoT devices or cellphones) is quite limited; to reduce
the communication overhead, FedAvg [2] has become a norm
for FL practices. It enforces each client to perform multiple
local iterations before global aggregation.

To put it formally, we let τ represent the synchronization
period (i.e., the number of local iterations each client trains
within a round), let ωik be the model parameters at iteration k
for client-i (i = 1, 2, ..., N), and let F i(ω) be the local loss
function. Then ωik is updated as:

ωik =

ωi
k−1 − η∇F i(ωi

k−1), if k mod τ 6= 0,

1

N

N∑
i=1

[ωi
k−1 − η∇F i(ωi

k−1)], otherwise.
(1)

We summarize the main notations of this paper in Table
I. While FL has attained remarkable success (as reported by
Google [4] and Meta [5]), it still suffers compromised accuracy
and efficiency.

In the accuracy aspect, in typical FL scenarios, the lo-
cal datasets on different clients are not independently and

identically distributed (i.e., being non-IID). Existing works
have shown that, FL with non-IID data may suffer substantial
accuracy degradation [6], [7], [16]. Our measurements also
confirm that there is a strong correlation between the model
convergence accuracy and the synchronization period τ : The
smaller τ , the higher model accuracy.

Meanwhile, in the efficiency aspect, given the bandwidth
limitation of typical FL devices, model synchronization is
often a severe performance bottleneck. Our measurements
show that, when training ResNet-20 with a network bandwidth
of 1Mbps, model synchronization takes nearly a half of the
per-round time even with τ = 200.

To summarize, there is a clear trade-off when setting up the
synchronization period: A smaller τ can yield a higher model
accuracy—yet at the cost of larger communication cost. It is
indeed a challenging task to attain both high accuracy and
high communication efficiency at the same time.

TABLE I: Summary of Main Notations

N Number of clients γ Divisor to scale down τ
ω Parameters of global model R Gradient Consistent Rate
ω? The optimal value of ω X∆ Indices of τ to be tuned
ωi
k Local model on

client-i at iteration k
ω[{x}] A parameter subset

indexed by {x}
F (ω) Global loss function η Learning rate
F i(ω) Loss function on client-i θ EMA smoothing factor
gi Local gradient from client-i P Positive gradient component
τ Synchronization period N Negative gradient component

B. Prior Arts on Synchronization Period Setup

In the literature, a series of methods have already been pro-
posed to set the synchronization frequency for better accuracy
and efficiency performance.

Some research works [11], [12], [13] focus on setting up
a static synchronization frequency with the objective of max-
imizing the overall accuracy under a given resource budget.
For example, Wang et al. [12] proposed Adaptive Federated
Learning, which directly estimates the best τ with a formula
related to the loss function characteristics (e.g., Lipschitz
constant, smoothness constant) and gradient divergence bound.
However, in reality it is hard to obtain those ground-truth
knowledge a priori, and in many FL practices [4], [5], there
is no explicit resource budget as a hard constraint.

In the meantime, some other works [14], [15], [9] propose to
dynamically adjust the synchronization frequency at runtime:
Setting a large τ in the beginning for high communication
efficiency, and switching to a small τ later for high accuracy.
For example, AdaComm [14] divides the training process into
short intervals and estimates the best frequency in each interval
based on the instantaneous training loss: τk =

⌈√
F (ωk)
F (ω0)

τ0

⌉
,

where τ0 is the initial synchronization period. Compared to
directly setting up a static τ assuming various ground-truth
knowledge, dynamically changing τ at runtime based on the
instantaneous training status is more practical, which is more
of our focus in this paper.

10 5 0 5 10 15 20

ω

Lo
ss

 V
al

ue

l1

l2

L=
l1+l2

2

(a) If clients’ local loss functions (l1
and l2) differ in curvature, the average
of local minimums (•) is inconsistent
with the global minimum (? for L).

0 100 200 300 400 500 600 700

Communication Round
-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

G
ra

di
en

t

client-1
client-2

(b) When training LSTM model
with non-IID data, the local gradi-
ents from different clients for a ran-
domly chosen parameter gradually
bifurcate during training.

Fig. 1: With insufficient synchronization, the global model
may stagnate with suboptimal parameters, where the local
gradients from different clients counteract with each other.

However, the above works treat all the model parameters
as an indivisible synchronization unit1, and it remains unclear
whether different parameters prefer different synchronization
periods during the FL process. Were that true, we can have
two remarkable benefits. First, by respectively setting up
the synchronization frequency for each parameter, we can
provision better adaptivity and attain better accuracy. Second,
since parameters with smaller τ can be synchronized while
the others are still in local computations, we can enable
inter-iteration computation-communication overlapping and
mitigate the communication bottleneck.

In the next section, we will analyze the microscopic param-
eter variations during the FL process, seeking to quantify the
frequency-tuning preference of different parameters.

III. MOTIVATING EXPLORATIONS

In this section, we explore whether all the model parameters
share the same preference on synchronization period (τ). To
acquire the per-parameter preference, we need to find out a
fine-grained metric to sense the instantaneous training status of
each parameter. We find that gradients provides an appropriate
observation angle to monitor the training status. During the
FL process, clients continuously calculate the gradients for
each parameter and report the updates to the server; compared
with loss or accuracy information [12], [14], gradient-based
information is more privacy-friendly and can naturally reflect
fine-grained training status for each corresponded parameter.

Gradient information can help instruct frequency tuning.
When training with non-IID data, the local loss functions
of different clients would be heterogeneous, i.e., having in-
consistent local minimums; during the local iterations, each
client is essentially refining the model parameters towards
its local optimum [6], [8], which is inaccurate for global

1A recent work, FedLAMA [17], allows parameters to be synchronized
under two different frequencies—those layers that are insignificant to model
accuracy (i.e., with a smaller discrepancy between the global model and the
local model) but incur a large communication cost would be synchronized
less frequently. Yet, each layer synchronized under FedLAMA are still com-
municated in one batch, suffering essentially the same problem as discussed
above. We will compare our solution also with FedLAMA in Sec. VI.

optimization—especially in the later iterations of a round. In
particular, when synchronization is conducted late, clients may
already reach their local minimums; worse, since FL clients
often have different loss function curvatures, the average of
their local minimums (obtained after FedAvg aggregation) is
not the global minimum, as described in Fig. 1a. Such a
process would repeat in each subsequent round, making the
global model stagnate with sub-optimal accuracy performance.
At such moment, it would be a waste of resources to continue
training under the current setup. To attain higher accuracy, we
need to increase the synchronization frequency (i.e., reduce τ)
to mitigate the divergence error of clients’ local updates.

We further note that the above frequency-tuning moment
can be probed by observing gradient characteristics. When
sub-optimal stagnation happens, the accumulated gradients
from different clients would exhibit a conflicting pattern. To
confirm that, we train the LSTM model above two clients with
non-IID data (each hosting one half of the KWS dataset, which
is described in Sec. VI-A). Fig. 1b depicts—for a parameter
chosen randomly—the accumulated local gradients of each
client during training: In the initial stage, the two clients’
local gradients are consistent, because the parameter is far
away from their local optimums and both clients make sim-
ilar refinement; as training proceeds, the gradients gradually
bifurcate across the zero-value axis, because the parameter
may now be between the two clients’ local optimums and the
clients make conflicting refinement. We call this phenomena
gradient bifurcation, which can work as a signal to tune the
synchronization period. Next, we make quantitative analysis
on whether all the model parameters share similar gradient
bifurcation patterns.

Different parameters prefer frequency tuning at differ-
ent moments. To quantify the level of gradient bifurcation,
we propose an intuitive metric called Gradient Consistent
Rate (R), which is defined at per-parameter granularity. Let
{g1[x], g2[x], ..., gN [x]} be the gradients2 for the parameter
with index x from N clients, then its gradient consistent
rate can be calculated as: R[x] =

|
∑N

i=1 g
i[x]|∑N

i=1 |gi[x]|
. Obviously,

this metric would be almost 0 if there exist strong conflicts
among clients’ local gradients. Thus, we judge that a parameter
has stagnated due to gradient counteraction when its gradient
consistent rate decreases below a given threshold close to 0,
and we call that time gradient-counteracting moment.

Further, we train a CNN model and a LSTM model (de-
scribed in Sec. VI-A) with the same non-IID setup as in
Fig. 1b, and measure the gradient-counteracting moments of
all the parameters, the results shown in Fig. 2. In particular,
we calculate the average gradient-counteracting moment (with
a threshold of R[x] < 0.1) respectively for parameters
within each layer, and the error bars show their 5% and

2For simplicity, hereafter we use “gradient” to represent the accumulated
local updates over all the iterations of a round. Moreover, while the model
parameters or gradients have multiple tensors, for easy manipulation we treat
them as a single vector, which can be efficiently realized by vectorizing (with
Tensor.view(-1)) and concatenating the original tensors.

conv1 conv2 fc1 fc2 fc3
Layer Name

0

100

200

300

400

Pa
ra

m
et

er
-s

ta
bl

ili
ze

d
R

ou
nd

(a) CNN

l0_ih l0_hh l1_ih l1_hh fc
Layer Name

0

100

200

300

400

500

600

700

Pa
ra

m
et

er
-s

ta
bl

ili
ze

d
R

ou
nd

(b) LSTM

Fig. 2: Average gradient-counteracting moment (i.e., round id
when gradient consistent rate decreases below a threshold) for
each layer. The error bars show the 5th/95th percentiles.

95% percentiles. From Fig. 2, we can learn that gradient
bifurcation is quite common when conducting FL with non-
IID data. More importantly, gradients for different parameters
do not bifurcate at the same pace: In Fig. 2, the average
gradient-counteracting moments for different layers are not
the same. Moreover, as implied by the error bars, there
exist huge gaps among the gradient-counteracting moments
even for the parameters within the same layer. Such intra-
layer heterogeneity is indeed reasonable as echoed by existing
works [18], [19]: Some features may be easier to learn, and
the corresponded parameters would converge faster.

In a nutshell, as indicated by gradient bifurcation character-
istics, different parameters do prefer heterogeneous frequency
tuning moments. In the remaining part of this paper, we will
show how to leverage such property to jointly enhance the
accuracy and efficiency performance of FL.

IV. PARAMETER ADAPTIVE SYNCHRONIZATION

Given the above explorations, in this paper we propose
Parameter-Adaptive Synchronization (PAS), which adaptively
tunes the synchronization period for each parameter based on
the runtime gradient behavior.

A. Tuning Synchronization Period

Recall that in Sec. III, to quantify the level of gradient
bifurcation for a given parameter, we have already proposed
a metric called Gradient Conflicting Rate. However, it is
not practical given the distinct challenges of real-world FL.
First, due to mini-batch randomness, the local gradients on
each client would fluctuate drastically, as can be seen in
Fig. 1b. Meanwhile, a client may join or leave the FL process
at random time, and only a portion of gradients that are
reported the earliest are collected by the FL server [3], [4],
[20]. Moreover, quantifying gradient bifurcation level requires
tracking the historical gradients of every client; yet, real-world
FL may involve hundreds or thousands of clients [3], [4],
[5], and our metric should scale well in computing or storage
overhead when facing massive clients.

To tackle the above challenges, we extend the metric defini-
tion of gradient consistent rate with two additional techniques:
smoothing and pooling.

First, to address statistical instability, we smooth the raw
gradients with their historical values. Nonetheless, a window-
based smoothing method requires maintaining multiple model
snapshots from previous rounds, which would consume a large
storage space. To maintain low storage overhead, we instead
calculate the gradients’ exponential moving average (EMA).
Let 〈·〉θ denote the operation to calculate exponential moving
average with a decay factor θ, and gir be the local gradient
of client-i in the r-th round, then we maintain g̃ir =

〈
gir
〉
θ

=
θ ∗ g̃ir−1 + (1− θ) ∗ gir as a smoothed version of gir.

Moreover, we note that only the smoothing method is
not enough: Due to system (participant) instability, it is
infeasible to persistently track the gradients of each client;
meanwhile, given the large client quantity, it is not memory-
efficient to record g̃ir for each client. To tackle such problems,
we further propose bilateral gradient pooling. That is, the
FL server only maintains two values for each parameter:
P̃r[x] = 〈

∑
iRelu(gir[x])〉θ—to add up the positive gradients,

and Ñr[x] = 〈
∑
i -Relu(-gir[x])〉θ—to add up the negative

ones. Here P̃r[x] collects the EMA values of all the positive
gradients across all the clients, and Ñr[x] collects the EMA
values of all the negative ones (we use the Relu operation to
filter out the positive/negative components). When the local
gradients for a parameter bifurcate, the two gradients also
bifurcate. This way, we can get a stable gradient pattern despite
with unstable and large-scale client participation. We further
define gradient consistent rate for parameter index x at round
r as: Rr[x] = |P̃r[x]+Ñr[x]|

|P̃r[x]|+|Ñr[x]|
. With such a metric definition, we

can effectively quantify the gradient bifurcation level of each
parameter with low cost and high robustness.

Algorithm to Tune Synchronization Period. Ideally, Rr[x]
shall decrease to 0 when that parameter’s training stagnates,
yet it may not be so in practice: First, the EMA smoothing
method cannot fundamentally eliminate the impact of mini-
batch randomness; second, deep neural networks may exhibit
irregular landscapes like flat minima [21], where some pa-
rameters conduct random walk even after model convergence.
To avoid the disturbance of such mini-batch randomness or
irregular landscape, we diagnose training stagnation not by
the absolute value of Rr[x] —but by its stabilizing behavior.
That is, if Rr[x] stops decreasing, we can judge that it reaches
gradient-counteracting moment, and the synchronization pe-
riod of that parameter shall then be adjusted.

Further, how to adjust the synchronization period of a pa-
rameter when its gradient-counteracting moment arrives? For
clarity, we use ~τ to represent the synchronization periods of
all the parameters. To make our solution generally applicable,
we employ a simple-yet-effective heuristic to update ~τ : Once
a parameter reaches the gradient-counteracting moment, we
scale down its synchronization period ~τ [x] by a constant γ
(typically set to 2). If training a parameter for less iterations
in a round, its aggregated gradient would be more accurate for
global optimum. Besides, it can be expected that the parameter
would stagnate again under the new synchronization period—
a moment that will also be detected with the Rr[x] metric,

t
Entire Model

computaion

communication

round

Entire Model

round
iteration

(a) FedAvg

t

computaion

communication

round round round

(b) PAS
Fig. 3: In FedAvg, model synchronization is conducted after
all the local iterations; yet with PAS, parameters with shorter
synchronization periods can be immediately transferred, miti-
gating the communication bottleneck in the critical path.

and another τ tuning action would then be triggered.

B. Eager Synchronization with Uniform Round Pace

When tuning ~τ [x] based on Rr[x], as implicated by Sec. III,
different parameters may be configured with different synchro-
nization periods. Then, how to conduct aggregation for such
parameters with heterogeneous synchronization periods? Intu-
itively, when any parameter finishes its local training iterations
(specified by ~τ [x]), we can immediately aggregate its gradient
and start its next training round. However, while this intuitive
method can enable communication-computation overlap, it has
a fatal deficiency. In fact, a model is deemed converged only
when all of its parameters converge—this is essentially a
straggler effect, meaning that parameters converging the most
slowly would dominate the model training time. In that case,
if we synchronize the parameters with shorter synchronization
periods independently, they would be synchronized for more
times before the ultimate model convergence, and totally more
network resources would be consumed. That is, although
the intuitive method can increase link utilization, it—on the
other hand—would inflate the total communication demand,
canceling out the potential efficiency benefit.

Therefore, to aggregate model parameters with heteroge-
neous synchronization periods, we introduce two principles:

1) Uniform Round Pace. In our solution, all the
parameters—irrespective of their synchronization periods—are
always at the same round. That is, if some parameters with
smaller synchronization periods finish their local iterations,
instead of immediately starting their next round, we stop
training them (by not recording their updates) and have them
wait for the other parameters until all the local computations of
that round complete. This way, while attaining higher accuracy
by shortening the synchronization periods of the early-bird
parameters (i.e., those parameters with shorter synchronization
periods), we do not increase the total communication amount.

2) Eager Synchronization. When the early-bird param-
eters are waiting for others, we can synchronize them in
the background. As shown in Fig. 3, in original FedAvg, all
the model parameters synchronize at the end of each round,
incurring long delay under the limited network bandwidth.

Local Training

PAS_Daemon

1 4

Client 1

3
2

1 Pass local parameters to
PAS_Daemon after each iteration
Transfer eagerly-synchronized
parameter batches to PAS_Master

2

3 Respectively return updated
values and synchronization
periods for each parameter batch

4 Update model and maximum
synchronization period after each
round

2
3 3

2

PAS_Master
Global Model

2
3

Local Training

PAS_Daemon

1 4

Client n

Fig. 4: Architecture and workflow of PAS.

Yet, for those early-bird parameters, there is no need to delay
their communication to the last minute. In contrast, with
our eager-synchronization strategy, we can communicate their
updates to the FL server immediately after finishing their local
training iterations. This way, their communication delay can
be removed out of the critical path—hidden by the other
parameters’ local computations, and it can be expected that
the per-round time can be remarkably reduced.

Note that the above inter-iteration communication-
computation overlapping method opens up a new optimization
domain for FL. In the literature, computation-communication
overlapping can effectively accelerate distributed model train-
ing in cluster scenarios [22], [23], yet it occurs at intra-
iteration level, i.e., overlapping the communication and com-
putation across different layers in forward/backward propa-
gation within an iteration. For FL scenarios, intra-iteration
overlapping occurs only in the last iteration of each round,
and due to the poor network condition, communication can
hardly be overlapped by the computation of an iteration. In
that sense, inter-iteration overlapping is much more effective
than intra-iteration overlapping for FL scenarios.

Remarks on Convergence Analysis. Some works [24], [8]
have proved that, for smooth and strongly-convex models,
FedAvg can attain a linear convergence rate O(1

T), where T is
the number of SGD iterations. Regarding PAS, we can prove
that it also yields a linear model convergence rate (with even
better coefficients); due to space limitation, we only describe
the main proof sketch here. In existing proofs of FedAvg [24],
[8], to bound E[F (ωT)] − F (ω?), a key step is to bound
the instantaneous divergence among clients’ local parameters
(i.e., 1

N

∑N
i=1 E ‖ ω̄k − ωik ‖2 where ω̄k = 1

N

∑N
i=1 ω

i
k) by

O(τ2)—please refer to Lemma 3.3 in [24] or Lemma 3 in
[8] for more details. With PAS, we monotonously decrease
τ , thus the divergence among clients’ local parameters would
always be smaller than the original case. Meanwhile, the other
items composing E[F (ωT)] − F (ω?) won’t be changed. In
this way, we can prove that PAS attains an even better linear
convergence rate.

V. IMPLEMENTATION

Overall Workflow. We have implemented our PAS solution
atop the PyTorch framework, and Fig. 4 describes the overall
architecture. In our PAS implementation, we create a PAS_-
Daemon on each client, and a PAS_Master on the FL server.
A PAS_Daemon handles all the synchronization operations
for that client, making the technique details of PAS transparent
to end users. The PAS_Master conducts global parameter
aggregation and also tunes the synchronization periods.

Alg. 1 further elaborates the detailed PAS workflow. After
a local iteration, each client passes the latest model parame-
ters to PAS_Daemon via the TryEagerSync() function.
That function identifies the parameters that shall be imme-
diately synchronized based on ~τ , and communicates them
to the PAS_Master via PAS_Master.SyncAndTune().
PAS_Master.SyncAndTune() also updates the synchro-
nization periods for the synchronized parameters based on the
principles in Sec. IV-A. After all the parameters have been syn-
chronized, the PAS_Daemon calls ConfigNextRound()
to refresh the local model parameters and the number of
computing iterations for the next round.

Key Implementation Techniques. In particular, there are
three critical techniques in our implementation:

1) Batched Communication. While each parameter has
a distinct synchronization period in PAS, communicating

Algorithm 1 Workflow with PAS
Require: γ, η, ω0, ~τ0 . γ: scale down divisor of τ ; η: learning rate.
Client: i=1, 2, ..., N:
Init: kround start ← 0, τ̂ ← max(~τ0) . τ̂ is a scalar
1: procedure CLIENTITERATE(k)
2: ωi

k+1 ← ωi
k − η∇F

i(ωi
k) . regular local iteration

3: PAS_Daemon.TryEagerSync(ωi
k+1, k − kround start)

4: if k − kround start = τ̂ then . prepare for the next round
5: ωi

k, τ̂ ← PAS_Daemon.ConfigNextRound()
6: kround start ← k

PAS Daemon: i=1, 2, ..., N:
Init: ω ← ω0, ~τ ← ~τ0 . ω0: initial model parameter

1: function TRYEAGERSYNC(ωi, k)
2: ωi[{x}]← ωi.masked select(~τ [x] = k)
3: if ωi[{x}] 6= ∅ then . launch sync-thread in the background
4: ω[{x}], X∆ ← PAS_Master.SyncAndTune(ωi[{x}], k)
5: ω.masked select(~τ [x] = k)← ω[{x}]
6: ~τ.masked select(x ∈ X∆) /= γ

7: function CONFIGNEXTROUND()
8: wait if any synchronization thread is still active
9: return ω, max(~τ) . refresh model and control update

PAS Master:
Init: ~τ ← ~τ0 . ~τ0: initial synchronization period

1: procedure SYNCANDTUNE(ω1[{x}], ω2[{x}], ..., ωN [{x}], k)
2: ω[{x}]← 1

N

∑
i ω

i[{x}] . aggregate reported parameter batch

3: calculate R[x] where ~τ [x] = k
4: X∆ ← the set of indices where R[x] no longer decreases
5: ~τ.masked select(x ∈ X∆) /= γ
6: return ω[{x}], X∆ . incremental model and control update

each parameter totally independently would be inefficient: As
observed by Shi et al. [23], each synchronization operation
incurs a non-negligible startup overhead and it would be more
efficient to synchronize parameters in larger batches. There-
fore, we group the parameters with the same synchronization
periods into one batch—with the masked_select() API
provided by PyTorch, which can efficiently extract and repack
the masked tensor subset into a new tensor; here the mask is set
by checking whether the synchronization period of a parameter
equals to the iteration number relative to round start.

2) Non-blocking Synchronization. To enable computation-
communication overlapping, we launch the PAS_Daemon
as a dedicated long-running process. For each parameter
batch to synchronize, the PAS_Daemon creates a background
thread with the threading.Thread() API. Moreover, the
returned parameters from the PAS_Master are temporally
cached in PAS_Daemon; when all synchronization threads
complete, those cached parameters would substitute the old
ones and be used in the next round.

3) Incremental Control-plane Update. Under PAS, the
PAS_Daemon and PAS_Master each maintains a copy
of ~τ—the control-plane metadata for synchronization. Such
metadata is dynamically adjusted on the PAS_Master, and
shall be kept up to date on each PAS_Daemon. When making
such control-plane update we shall try to minimize the extra
communication overhead. To that end, we choose to update τ
incrementally—the PAS_Master only notifies PAS_Dae-
mons the indices of the parameters whose synchronization
periods should be tuned; then they respectively scale down the
τ values of the involved parameters by a preset factor γ. This
way, we can amortize the control-plane updating overhead.

Overhead Analysis. Our PAS solution incurs additional over-
heads in computation, memory and communication. Computa-
tion overhead is incurred when calculating gradient consistent
rate and selecting the parameters for eager synchronization;
memory overhead is incurred because PAS needs to record
the synchronization period for each parameter; communication
overhead is incurred when remotely updating the synchro-
nization periods. Yet, those overheads are indeed marginal.
First, PAS computations (e.g, masked_select()) are very
efficient with the native tensor-processing APIs of PyTorch.
Meanwhile, PAS memory consumption is comparable to the
model size, which is orders-of-magnitudes smaller than the
memory occupied by input data and feature maps [25]. Finally,
with incremental control-plane update, the communication
overheads can be amortized to many rounds.

VI. EVALUATION

A. Experimental Setup

Hardware Setup. To evaluate PAS performance, we build
an EC2 cluster with 100 c6i.large instances and 1
c5a.8xlarge instance. Each c6i.large instance has 2
vCPUs, 4GB RAM and 1Mbps link bandwidth (bounded with
the wondershaper [26] tool). Such configurations are similar

to a smart phone. Meanwhile, the c5a.8xlarge instance—
which has 32 vCPUs, 64GB RAM and a link bandwidth of
10 Gbps—works as the FL server.
Local Training Setup. In our evaluation we use three datasets:
CIFAR-10 [27], EMNIST [28] and KWS [29] (KeyWord
Spotting dataset, a subset of the Speech Command dataset with
10 keywords). Upon the EMNIST dataset, we train a CNN
model containing 2 convolutional layers with 5 × 5 kernels;
upon the CIFAR-10 dataset, we train ResNet-20 [30], a tiny
ResNet model optimized for CIFAR-10 dataset; upon the KWS
dataset, we train a LSTM network with 2 recurrent layers (with
a hidden size of 64). Moreover, to emulate non-IID data setup,
we generate each client’s local dataset following the Dirichlet
distribution [31], which controls the label class composition
with a concentration parameter α (α→∞ indicates IID data
among clients, while α = 0 indicates that the dataset on each
client only has one label class). In our experiments we set α
to 0.5, under which 60% clients host no more than 3 classes.
Meanwhile, we set the batch size, learning rate and weight
decay respectively to 100, 0.01 and 0.01.
Synchronization Setup. In our experiments, the default syn-
chronization period of each parameter is set to 200 (i.e., each
value of ~τ0 is 200). Meanwhile, confronting dynamic client
participation, a FL server collects only a fraction of updates
reported the earliest; in our experiment we set that fraction to
40%. Regarding our PAS scheme, we set the EMA smoothing
factor θ to 0.9, and set γ to 2; besides, considering that
too frequent synchronization would incur high communication
overhead, we set 12 as the lower-bound value in ~τ .
Baselines. We compare PAS against 4 baselines: FedAvg [1],
FedProx [32], AdaComm [14] and FedLAMA [17]. Fed-
Prox [32] is a famous FL algorithm that introduces an addi-
tional regularization term to bound the divergence between the
local model and the global one; the weight of the regularization
item (µ) is set to the recommended value 0.01. AdaComm [14]
is an adaptive method which tunes the synchronization period
of the entire model based on the instantaneous loss values
(introduced in Sec. II-B). FedLAMA [17] assigns different
synchronization periods to different layers; in our experiments,
the important layers as judged in [17] are synchronized with
a synchronization period of 200, yet the others with 400.

B. End-to-end Performance Comparison

TABLE II: The highest accuracy attained after training CNN,
LSTM, and ResNet-20 respectively for 3/6/6 hours.

Method CNN ResNet-20 LSTM

FedAvg 57.59 57.66 69.70
FedProx 57.71 56.51 70.32

AdaComm 63.84 61.88 75.45
FedLAMA 57.39 53.38 74.58

PAS 69.74 64.60 81.95

In Table II, we present the end-to-end performance com-
parison between PAS and the baseline schemes. It shows the

0 1 2 3
Time (h)

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
AdaComm
FedLAMA
PAS

0 1 2 3
Time (h)

0%

20%

40%

60%

80%

100%

Pe
rio

d
D

is
tri

bu
tio

n =200
=100
=50
=25
=12

(a) CNN

0 1 2 3 4 5 6
Time (h)

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
AdaComm
FedLAMA
PAS

0 1 2 3 4 5 6 7
Time (h)

0%

20%

40%

60%

80%

100%

Pe
rio

d
D

is
tri

bu
tio

n =200
=100
=50
=25
=12

(b) ResNet-20

0 1 2 3 4 5 6
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
AdaComm
FedLAMA
PAS

0 1 2 3 4 5 6
Time (h)

0%

20%

40%

60%

80%

100%

Pe
rio

d
D

is
tri

bu
tio

n =200
=100
=50
=25
=12

(c) LSTM
Fig. 5: FL performance under different schemes together with
the synchronization period distribution under PAS.

highest test accuracy achieved after training CNN, ResNet-20
and LSTM model respectively for 3, 3 and 6 hours. As implied
by Table II, our approach PAS can always attains the best
accuracy performance. For instance, when training LSTM, the
accuracy value attained by PAS is 12.25% higher than vanilla
FedAvg, and 6.50% higher than the second-best (AdaComm).

The performance benefit of PAS comes from two aspects.
First, by independently tuning the synchronization frequency
for each parameter, we can attain the best adaptivity, being
able to reach the highest accuracy after a fixed number of
training rounds. For example, after training the CNN model for
1000 rounds, the accuracy performance of FedAvg, FedProx,
AdaComm, FedLAMA and PAS are 57.59%, 57.76%, 63.35%,
57.39% and 69.04%, respectively. Second, by enabling intra-
iteration communication-computation overlapping, PAS can
mitigate the network bottleneck and reduce the per-round time.
Our measurements show that, when training CNN for the
first 1000 rounds, the average per-round time with PAS is
17.9% shorter than that with FedAvg. We will elaborate the
communication speedup effect of PAS later in Sec. VI-C.

Further in Fig. 5, we depict the instantaneous test accuracy
and the distribution of parameter synchronization periods
under PAS. As shown in the left columns of Fig. 5, the
accuracy enhancement under PAS is the most rapid among
all the schemes in each case. Meanwhile, recall that as
training proceeds, model parameters would gradually reach the

0 40 80 120
Time (s)

4

2

0

2

4

6
D

ow
n/

U
pl

in
k

B
an

dw
id

th
 U

sa
ge

 (M
bp

s)
PAS FedAvg

(a) ResNet-20

0 20 40 60
Time (s)

2

1

0

1

2

3

D
ow

n/
U

pl
in

k
B

an
dw

id
th

 U
sa

ge
 (M

bp
s)

PAS FedAvg

(b) LSTM

Fig. 6: Instantaneous uplink/downlink bandwidth usage of the
FL server during a randomly-selected observation window
(The upper half of each figure describes the uplink).

gradient-counteracting moments, and PAS would accordingly
reduce their synchronization periods. As shown in the right
columns of Fig. 5, the proportion of parameters with large
synchronization periods always keep shrinking in PAS, and
finally almost all the parameters are with the smallest value τ
(12). This way, models trained with PAS can be refined with
more accurate gradients, and thus attain a higher accuracy.

C. Communication Speedup Deep Dive

To better understand the positive effect of PAS on commu-
nication efficiency, we measure the instantaneous bandwidth
usage during the FL process. In Fig. 6, we show the uplink and
downlink bandwidth usage of the FL server during a randomly-
selected time window when training ResNet-20 and LSTM.
For example, during the observation window of ResNet-20,
approximately 20% parameters are with a synchronization
period of 200, 30% with 100, 40% with 50, and the remaining
10% with 25. As shown in Fig. 6, by eagerly synchronizing
parameters in multiple batches under PAS, both the uplink and
downlink can be utilized more thoroughly (active for most of
the time). This is contrary to vanilla FedAvg where the links
are mostly idle. Therefore, we can observe for both models
that the per-round time does become shorter under PAS.

To illustrate the above efficiency speedup more clearly
and in a wider time scope, we resort to Fig. 7, which
depicts how per-round time varies in the first 400 rounds.
As training proceeds, the synchronization periods of different
parameters become more heterogeneous, yielding a higher
level of communication-computation overlapping and thus a
decreasing per-round time. In particular, at round-400, PAS
can speed up each training round by 54.5% and 20.3% for
ResNet-20 and LSTM, respectively. Note that, after training
ResNet-20 for 250 rounds, there is a sudden reduction in per-
round time; this is because the maximal synchronization period
(i.e., τ̂ in Alg. 1) decreases from 200 to 100 after 250 rounds,
further halving the computation time.

D. Ablation Study on Per-parameter Granularity

PAS has proven effective with (1) adaptive synchronization
period tuning (2) at per-parameter granularity. What would
happen if we tune the synchronization period still adaptively
but not at per-parameter granularity? In this part, we conduct

0 100 200 300 400
Communication Round

0

10

20

30

40

50

60

Pe
r-r

ou
nd

 T
im

e
(s

)

PAS
FedAvg

(a) ResNet-20

0 100 200 300 400
Communication Round

0

4

8

12

16

Pe
r-r

ou
nd

 T
im

e
(s

)

PAS
FedAvg

(b) LSTM

Fig. 7: The variation of per-round time during the FL process.

0 1 2 3 4 5 6
Time (h)

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Parameter-Wise
Global-Wise
Layer-Wise

(a) ResNet-20

0 1 2 3 4 5
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Parameter-Wise
Global-Wise
Layer-Wise

(b) LSTM

Fig. 8: PAS performance with different tuning granularities.

ablation experiments by comparing our PAS scheme with
two variants: model-wise period tuning and layer-wise period
tuning. The former ensures that all the model parameters share
an identical (yet dynamic) synchronization period, and the later
adjusts synchronization period at per-layer granularity. For
those variants, the synchronization period of a model (layer)
is tuned based on the average gradient consistent rate of all
the parameters in that model (layer). In Fig. 8, we measure
the PAS performance when training ResNet-20 and LSTM in
a 40-node cluster with different tuning granularities. As shown
in Fig. 8, by tuning ~τ at the scalar granularity, our PAS scheme
attains the best adaptivity and the highest communication-
computation overlapping level, thus achieving the most rapid
accuracy enhancement.

E. Sensitivity Analysis

Sensitivity to the Non-IID Level. How does the data het-
erogeneity level affect PAS performance? To explore that, we
follow the experimental setup in Sec. VI-B, and set the hyper-
parameter α of the Dirichlet distribution respectively to 0.1,
1 and 10 (the smaller α, the higher the data non-IID level).
In Fig. 9, we present the highest test accuracy when training
ResNet-20 and LSTM under FedAvg and PAS. We note that
the accuracy improvement of PAS is more pronounced with
smaller α values (i.e., when facing more heterogeneous data),
aligning with our original insights and design rationales.
Sensitivity to hyper-parameter. In our default setup, each
time a parameter reaches its gradient-counteracting moment,
we scale down its synchronization period to a half (i.e.,
γ = 2 in Alg. 1). Is that γ hyper-parameter critical to PAS
performance? We respectively change γ to 1.5 and 4, and
compare the resultant PAS performance with the initial case
where γ = 2. In Fig. 10, we show the FL performance when
training ResNet-20 and LSTM with different γ values. As

0.1 1 10
Dirichlet

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 A

cc
ur

ac
y

43.54

64.97

77.01

58.35
67.97

78.37
FedAvg
PAS

(a) ResNet-20

0.1 1 10
Dirichlet

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

40.50

81.27
89.37

79.57
85.62

91.35

FedAvg
PAS

(b) LSTM

Fig. 9: The highest accuracy achieved under FedAvg and PAS
for ResNet-20 and LSTM with different data non-IID levels.

0 1 2 3 4 5 6
Time (h)

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

=1.5
=2
=4

(a) ResNet-20

0 1 2 3 4 5
Time (h)

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

=1.5
=2
=4

(b) LSTM

Fig. 10: PAS performance when setting the scale-down factor
γ to different values.

shown in Fig. 10, the performance of PAS is quite stable across
different γ: This is because sync-period tuning is triggered
periodically as described in Sec. IV; when adopting a larger
scale-down factor, sync-period tuning would be triggered for
fewer times. Consequently, a parameter would reach a given
synchronization period value after a similar amount of time.
In sum, PAS is robust to the γ hyper-parameter.

F. Overheads

TABLE III: Additional Overheads Incurred by PAS

Cost Scheme CNN ResNet-20 LSTM

Computation
Time

(per-round)

FedAvg 11.48s 28.47s 11.54s

PAS
11.55s 28.87s 11.62s

(0.58%↑) (1.41%↑) (0.71%↑)

Memory
Occupation

Amount

FedAvg 255.3MB 555.7MB 352.9MB

PAS
260.5MB 577.3MB 355.3MB
(2.04%↑) (3.89%↑) (0.68%↑)

Transmission
Amount

(400 rounds)

FedAvg 136.0MB 433.4MB 85.4MB

PAS
137.3MB 437.5MB 85.98MB
(0.93%↑) (0.95%↑) (0.68%↑)

PAS does incur additional overheads in computation, mem-
ory and communication (as elaborated in Sec. V). In Table III,
we measure the average PAS overheads for the three models.
We find that PAS computations take only around 1% of the
original per-round time. Meanwhile, the additional memory
cost of PAS is also marginal (≤ 4%). Moreover, we observe
from the first 400 rounds that the control-plane updating
overhead takes up less than 1% of the total transmission
amount. To summarize, the overheads of PAS are negligible
compared with its performance benefits.

VII. ADDITIONAL RELATED WORK AND DISCUSSION

In this section, we briefly summarize the related works that
respectively improve FL in accuracy and efficiency.

Improving Training Accuracy. To reduce the accuracy loss
caused by non-IID data, a primary methodology is to mitigate
the heterogeneity among clients’ local datasets: Zhao et al.
proposed to augment each client’s local dataset with shared
samples or synthetic samples generated from GAN models [6],
[33], and Lai et al. proposed to only select a portion of partic-
ipating clients with high-quality datasets [20], [34]. Another
methodology to improve FL accuracy is to rectify the opti-
mizing strategy: Some proposed to add an extra regularizing
term to the loss function [32], [33], and Li et al. proposed
to add a specific momentum to the optimizer [35]. All those
methods are orthogonal to PAS, and they fail to simultaneously
optimize the communication efficiency.

Improving Communication Efficiency. Many research works
have been proposed on improving communication efficiency
for distributed learning, and we classify them into two cat-
egories: content compression (i.e., quantization and sparsi-
fication) and scheduling optimization. Under the content-
compression scope, quantization [36], [37], [38] means to
transfer parameters in lower bits (e.g., 8-bits or even 1-bit),
while sparsification [19], [39], [10] only synchronizes the
significant parameters. Those methods can be integrated with
PAS. Under the scheduling-optimization scope, communica-
tion efficiency is improved by relaxing the synchronization
barriers [40], [41], by communicating the early-consumed pa-
rameters at higher priorities [42], [43], and also by overlapping
communication with computation across different layers [22],
[23]. To our knowledge, we are the first that propose to overlap
communication and computation across different iterations.

Discussion on PAS Compatibility with Differential Pri-
vacy. So far we have skipped the encryption aspect of FL.
A commonly-adopted gradient encryption method for FL is
differential privacy (DP), which works by adding random
noises (following a Gaussian or Laplace distribution) to the
original gradients [44], [45]. Since the noise distribution has
a mean value of 0, the added noises do not change the overall
gradient bifurcation pattern among clients. Therefore, our PAS
method can still work with such gradient variants.

VIII. CONCLUSION

In this work, we propose Parameter-Adaptive Synchroniza-
tion (PAS) to simultaneously improve FL performance in
both accuracy and efficiency. PAS works by adaptively tuning
the synchronization period of each parameter based on its
instantaneous gradient bifurcation status. In this way, FL can
persistently improve model quality with more accurate refine-
ment in each round, and the communication efficiency can also
be enhanced by enabling communication-computation overlap.
Prototype evaluations in a realistic FL setup demonstrate that
our PAS scheme can improve model accuracy by over 10%
while reducing per-round time by over 50%.

ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Fundation of China (NSFC) (62202300) and Shanghai Pujiang
Program (22PJ1404600). The work of Yifei Zhu is supported
by the National Key R&D Program of China (Grant No.
2023YFB2704400). Chen Chen, Yifei Zhu and Minyi Guo are
the corresponding authors.

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[3] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ram-
age, and F. Beaufays, “Applied federated learning: Improving google
keyboard query suggestions,” arXiv preprint arXiv:1812.02903, 2018.

[4] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan et al.,
“Towards federated learning at scale: System design,” Proceedings of
machine learning and systems, vol. 1, pp. 374–388, 2019.

[5] D. Huba, J. Nguyen, K. Malik, R. Zhu, M. Rabbat, A. Yousefpour, C.-J.
Wu, H. Zhan, P. Ustinov, H. Srinivas et al., “Papaya: Practical, private,
and scalable federated learning,” in MLSys, 2022.

[6] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[7] K. Hsieh, A. Phanishayee, O. Mutlu, and P. B. Gibbons, “The Non-IID
Data Quagmire of Decentralized Machine Learning,” in ICML, 2020.

[8] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[9] M. K. Nori, S. Yun, and I.-M. Kim, “Fast federated learning by balancing
communication trade-offs,” IEEE Transactions on Communications,
vol. 69, no. 8, pp. 5168–5182, 2021.

[10] C. Chen, H. Xu, W. Wang, B. Li, B. Li, L. Chen, and G. Zhang,
“Communication-efficient federated learning with adaptive parameter
freezing,” in IEEE International Conference on Distributed Computing
Systems (ICDCS), 2021.

[11] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM, 2018.

[12] S. Wang, T. Tuor, K. K. Leung, C. Makaya, T. He, and K. Chan,
“Adaptive federated learning in resource constrained edge computing
systems,” Journal on Selected Areas in Communications, vol. 37, no. 6,
pp. 1205–1221, 2019.

[13] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” in IEEE INFOCOM, 2021.

[14] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update sgd,” in SysML, 2019.

[15] J. Zhang, X. Cheng, C. Wang, Y. Wang, Z. Shi, J. Jin, A. Song, W. Zhao,
L. Wen, and T. Zhang, “Fedada: Fast-convergent adaptive federated
learning in heterogeneous mobile edge computing environment,” World
Wide Web, vol. 25, no. 5, pp. 1971–1998, 2022.

[16] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the Convergence
of FedAvg on Non-IID Data,” in ICLR, 2020.

[17] S. Lee, T. Zhang, and A. S. Avestimehr, “Layer-wise adaptive model
aggregation for scalable federated learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, no. 7, 2023, pp. 8491–
8499.

[18] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[19] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching LAN speeds,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017, pp. 629–647.

[20] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection.” in OSDI, 2021, pp.
19–35.

[21] S. Hochreiter and J. Schmidhuber, “Flat minima,” Neural Computation,
vol. 9, no. 1, pp. 1–42, 1997.

[22] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication architec-
ture for distributed deep learning on gpu clusters.” in USENIX Annual
Technical Conference, vol. 1, no. 1, 2017, pp. 1–2.

[23] S. Shi, X. Chu, and B. Li, “Mg-wfbp: Efficient data communication
for distributed synchronous sgd algorithms,” in IEEE Conference on
Computer Communications (INFOCOM), 2019.

[24] S. U. Stich, “Local sgd converges fast and communicates little,” arXiv
preprint arXiv:1805.09767, 2018.

[25] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in 49th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2016.

[26] “wondershaper,” https://github.com/magnific0/wondershaper, 2020.
[27] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features

from tiny images,” 2009.
[28] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending

mnist to handwritten letters,” in 2017 international joint conference on
neural networks (IJCNN). IEEE, 2017, pp. 2921–2926.

[29] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[31] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” arXiv
preprint arXiv:1909.06335, 2019.

[32] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” arXiv preprint
arXiv:1812.06127, 2018.

[33] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated dis-
tillation and augmentation under non-iid private data,” arXiv preprint
arXiv:1811.11479, 2018.

[34] Y. J. Cho, J. Wang, and G. Joshi, “Towards understanding biased client
selection in federated learning,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2022.

[35] C. Li, R. Li, P. Zhou, H. Wang, Y. Li, S. Guo, and K. Li, “Gradient
scheduling with global momentum for non-iid data distributed asyn-
chronous training,” arXiv preprint arXiv:1902.07848, 2019.

[36] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “Federated
learning with quantization constraints,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2020.

[37] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in INTERSPEECH, 2014.

[38] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in NeurIPS, 2017.

[39] W. Luping, W. Wei, and L. Bo, “Cmfl: Mitigating communication
overhead for federated learning,” in IEEE international conference on
distributed computing systems (ICDCS), 2019.

[40] C. Chen, W. Wang, and B. Li, “Round-robin synchronization: Mitigating
communication bottlenecks in parameter servers,” in IEEE Conference
on Computer Communications (INFOCOM), 2019.

[41] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. Ganger, and E. P. Xing, “More effective distributed ml via a stale
synchronous parallel parameter server,” in NeurIPS, 2013.

[42] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo, “A generic communication scheduler for distributed dnn training
acceleration,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019.

[43] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed dnn training,”
Proceedings of Machine Learning and Systems, vol. 1, pp. 132–145,
2019.

[44] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in ACM
CCS, 2015.

[45] N. Wu, F. Farokhi, D. Smith, and M. A. Kaafar, “The value of
collaboration in convex machine learning with differential privacy,” in
IEEE Symposium on Security and Privacy, 2020.

