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Abstract—Federated learning (FL) has emerged as a prevalent
distributed machine learning scheme that enables collaborative
model training without aggregating raw data. Cloud service
providers further embrace Federated Learning as a Service
(FLaaS), allowing data analysts to execute their FL training
pipelines over differentially-protected data. Due to the intrinsic
properties of differential privacy, the enforced privacy level on
data blocks can be viewed as a privacy budget that requires
careful scheduling to cater to diverse training pipelines. Existing
privacy budget scheduling studies prioritize either efficiency or
fairness individually. In this paper, we propose DPBalance, a
novel privacy budget scheduling mechanism that jointly optimizes
both efficiency and fairness. We first develop a comprehensive
utility function incorporating data analyst-level dominant shares
and FL-specific performance metrics. A sequential allocation
mechanism is then designed using the Lagrange multiplier
method and effective greedy heuristics. We theoretically prove
that DPBalance satisfies Pareto Efficiency, Sharing Incentive,
Envy-Freeness, and Weak Strategy Proofness. We also theo-
retically prove the existence of a fairness-efficiency tradeoff
in privacy budgeting. Extensive experiments demonstrate that
DPBalance outperforms state-of-the-art solutions, achieving an
average efficiency improvement of 1.44× ∼ 3.49×, and an
average fairness improvement of 1.37× ∼ 24.32×.

Index Terms—Differential privacy, federated learning, resource
allocation, privacy budget, fairness, efficiency

I. INTRODUCTION

The proliferation of data on edge devices and the advance-
ment of machine learning models drive the wide deploy-
ment of machine learning services. However, existing model
training paradigm has raised severe privacy concerns since
sensitive information needs to be uploaded to central servers
to be analyzed. In response to this, privacy protection laws
like the General Data Protection Regulation of EU (GDPR)
[1] have been established worldwide, which further drives
the emergence of federated learning (FL). FL is a privacy-
preserving distributed machine learning scheme where edge
devices collaboratively train a global model while keeping
their data local. It has been widely studied and deployed
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nowadays in applications such as Google keyboard [2]–[4],
hotword detection [5], and medical research [6].

With the advent of FL techniques, there has been a notable
rise in distributed machine learning platforms like FedML
[7], FATE [8] that offer a cloud-based “federated learning
as a service” (FLaaS) [9]. With the lifetime of a federated
model training process being represented as a pipeline, these
platforms facilitate training of diverse pipelines from data an-
alysts using crowdsourced data owners. To further protect and
manage privacy loss, differential privacy (DP) is adopted in the
FLaaS platform [10] [11]. It ensures the output of FL pipeline
would not change much for any neighbor input datasets. DP
is enforced by adding random noise to intermediate data like
gradient [12] of FL training. With the help of DP mechanisms,
data owners can specify a privacy level on their continuously
generated data blocks. Each data analyst submits multiple FL
pipelines with different training demands on the amount of
data and its privacy level.

According to the definition of DP, the training of a FL model
on a data block introduces a certain level of privacy loss.
Furthermore, this privacy loss is additive when data is utilized
for multiple times. As a result, privacy in FLaaS platforms
can be perceived as a consumable and quantifiable resource.
The privacy level set by each crowdsourced data owner can
be regarded as a privacy resource budget. Consequently, the
efficient scheduling of FL pipelines to train on crowdsourced
private data within the privacy budget becomes a critical
challenge for FLaaS platforms.

However, while privacy can be treated as a resource, tradi-
tional resource allocation methods in distributed computing
cannot be directly applied. The primary distinction lies in
the nature of privacy resources, which are characterized as
non-replenishable and continuously generated as new data
is collected. Unlike traditional resources such as CPU and
memory which can be released for subsequent tasks after
prior usage, privacy resources are not recoverable once their
budget has been depleted. Furthermore, allocating available
resources solely based on demand, a strategy that may work
for CPU/memory allocation, may be however inefficient or
unfair for privacy resources.

Existing works in privacy budget scheduling solely consider
either efficiency [13]–[17] or fairness [18]. So far there is no
privacy budget scheduling mechanism that jointly considers



them both. In fact, efficiency and fairness of an allocation
scheme are complicatedly affected by many factors. The FL
platform may hope to let the pipeline await to obtain a boarder
view of the allocation market to achieve a better performance
in system throughput and fairness. However, requiring the
pipelines to wait for a long time increases the latency, which
hurts the final efficiency from a different perspective. In
addition, naively allocating the majority of resources to those
low-demand pipelines to maximize the number of completed
pipelines may make the allocation among data analysts im-
balanced, which hurts fairness. Therefore, it is challenging
to derive an allocation comprehensively taking efficiency and
fairness into consideration in the context of FLaaS platform.

In this paper, we present the first privacy budget scheduling
mechanism, DPBalance, that jointly considers efficiency and
fairness. We first develop a comprehensive utility function
incorporating dominant shares across different FL pipelines
to calculate data analyst-level fairness and platform-level ef-
ficiency. To capture the characteristics of FLaaS training, FL-
specific performance metrics, such as the matching degree of
data and FL models, are further integrated into the utility
model. A sequential allocation mechanism is then designed
using the Lagrange multiplier method and effective greedy
heuristics. From the perspective of fairness, we theoretically
prove that our solution can simultaneously satisfy four key
economic properties. From the perspective of efficiency, the
most efficient allocation result under the privacy preference is
derived by maximizing platform’s utility function. In summary,
the contributions of our work are as follows.

• We present the first privacy budget scheduling mecha-
nism, DPBalance, that jointly considers efficiency and
fairness in the context of FLaaS model training.

• We design a sequential allocation algorithm using the
Lagrange multiplier method and effective greedy heuris-
tics so that data analyst-level fairness and platform-level
efficiency can be maximized.

• We theoretically prove that DPBalance satisfies four
essential economic properties: Pareto Efficiency, Sharing
Incentive, Envy-Freeness, and Weak Strategy Proofness.

• We discover and theoretically prove the existence of a
tradeoff between fairness and efficiency under practical
conditions.

• Extensive experiments show that DPBalance outperforms
other state-of-the-art budget scheduling baselines by
1.44× ∼ 3.49× in efficiency and 1.37× ∼ 24.32× in
fairness on average.

The remainder of this paper is constructed as follows:
Section II summarizes the related work. Background and
motivation are presented in Section III. In Section IV, we
present the system model and problem formulation of privacy
budget scheduling. Algorithm design and theoretical analysis
are presented in Section V. The evaluation part is presented
in Section VI, followed by the conclusion in Section VII.
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Fig. 1. Taxonomy of existing privacy budgeting studies and ours (DPBalance).

II. RELATED WORK

A. Resource allocation in FL

Existing resource allocation studies in FL mainly focus
on allocating traditional resources, like energy consumption
[19], bandwidth [20] or computation resources [21], [22] to
train a single model. In FEDL [19], the uplink transmission
rate is allocated to minimize energy cost and training time.
In [20], a joint device scheduling and resource allocation
policy is proposed to maximize model accuracy with a limited
training time budget and latency threshold. In q-FEL [21],
fairness in accuracy across different users is considered when
allocating edge devices. In [22], a deep learning-based auction
mechanism is proposed to infer the valuation of each cluster
head’s service to allocate clusters’ computation resources.
However, none of these works consider privacy as resources
and study privacy allocation problems in the emerging FLaaS
setting, where multiple FL models need to be trained on top
of privacy-preserved data owners.

B. Privacy budgeting for distributed model training

Current studies on privacy budget scheduling can mainly be
categorized into two types: efficiency-oriented [13]–[17] and
fairness-oriented approaches [18]. In [14], privacy budget is
allocated to maximize the overall quality of query results with
an online budgeting algorithm. In [15]–[17], privacy budget
allocation problem is formulated to maximize the number of
allocated pipelines, and adopt heuristic algorithms [15], [16],
or solver [17] to resolve it. DPF [18] focuses on the fairness
in allocation and is designed to ensure first N pipelines’
max-min fairness at the pipeline level. Different from these
studies, we propose the first work to consider both fairness and
efficiency in privacy budget scheduling. We further present a
comprehensive comparison of our work to others in Fig. 1.

III. BACKGROUND AND MOTIVATION

A. Why privacy can be allocated?

In this subsection, we introduce bounded property, compo-
sition of privacy to illustrate why privacy can be regarded as
resources to be allocated.

To show the bounded property, we introduce the state-of-
the-art DP, Rényi Different Privacy [23] [24], and the resulting
privacy loss from it. We first give the formal definition of
Rényi divergence:

Definition 1 (Rényi Divergence). Let Γ and Υ be two distri-
butions, Rényi divergence RDα of order α is defined as



RDα(Γ||Υ) ≜
1

α− 1
logEx∼Υ(

Γ(x)

Υ(x)
), (1)

where Γ(x) and Υ(x) are densities of Γ and Υ at point x.

Then, Rényi Different Privacy is defined as follows:

Definition 2 ((α, ϵ)-Rényi Different Privacy (RDP)). Let M
be the random mechanism processing on two adjacent datasets
D and D′ that only differ in one record. (α, ϵ)-Rényi Different
Privacy holds that

RDα(M(D)||M(D′)) ≤ ϵ, (2)

where Rényi divergence RDα(M(D)||M(D′)) is equivalent
to the privacy loss of dataset D.

We call the ϵ-bounded privacy loss as the bounded property.
When α approaches to ∞, (α, ϵ)-RDP is equivalent to the basic
(ϵ, 0)-DP. RDP is widely applied in the privacy budgeting so-
lutions [15]–[18] for its advantages over basic DP: 1) it bounds
privacy loss tighter when achieving similar performance in FL;
2) it permits more convenient composition of multiple different
DP mechanisms including Gaussian mechanism and Laplacian
mechanism, and scales better.

As different data analyst requires different amount of data,
we partition growing dataset of each FL device into data blocks
based on time, namely S = {dk|k ∈ [1,∞)}, where S is
the data block set. In this way, each data analyst can specify
different number of data blocks. To make each data block
reusable and accountable for privacy loss each time being used,
it’s essential to introduce parallel composition and sequential
composition, which depict the additive property of privacy.

Definition 3 (Parallel composition). We denote each data
block i’s privacy loss as ϵi. Then, the privacy loss for the
whole growing dataset is max ϵi, ∀i ∈ [1,∞).

Definition 4 (Sequential composition). Let the total privacy
budget of FL device be ϵg . We assume it has been used K
times by different FL pipelines, and each time it is consumed
ϵi privacy budget. Then, the privacy loss for this data block
can be

∑K
i=1 ϵi.

Intuitively, parallel composition guarantees the privacy loss
of dataset is bounded by the maximum privacy loss of its single
privacy loss. Sequential composition depicts that privacy loss
is additive for a single data block. It is straightforward to prove
that these two properties hold perfectly for (α, ϵ)-RDP.

As privacy is limited due to the bounded property and
additivity due to the composition property, it can be regarded
as a special resource to be allocated.

B. Effects of bad scheduling

As mentioned, privacy can be considered as an important
resource to be allocated. When the limited resource is allocated
to multiple pipelines, efficiency and fairness of the allocation
becomes a critical metric [13], [21], [25]–[27].
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Fig. 2. Allocation results under different schemes for a particular time slot.

Consider that data blocks are constantly contributed by edge
devices and data analysts constantly coming in with their
pipelines. Each pipeline demands certain data blocks with
privacy demands. Privacy demand can be regarded as the
amount of privacy loss of a certain data block specified by
a data analyst. In our context, dominant share is defined as
the maximum privacy budget among all required data blocks
of a training demand from a pipeline or data analyst. Training
demand includes number of data blocks and privacy demand
on each data block.

Definition 5 (Pipeline’s maximum share). A pipeline’s maxi-
mum share of all the required data block’s privacy resources
is defined as

µij = max
k

γ<k>
ij , (3)

where γ<k>
ij is the normalized privacy demand of pipeline j

from data analyst i for data block k.

Thus, this pipeline’s dominant share can be represented as
µijxij . xij is the ratio of allocated resource to privacy demand
of pipeline j from data analyst i, which can also be considered
as allocated result to pipeline j.

Definition 6 (Data analyst’s maximum share). Data analyst
i’s maximum share of all the required data block’s privacy
resource is defined as

µi = max
k

γ<k>
i , (4)

where γ<k>
i is the normalized privacy demand that data

analyst i wants for data block k on all selected edge devices,
namely, γ<k>

i =
∑ni

j=0 γ
<k>
ij xij .

Thus, data analyst i’s dominant share is represented as µixi,
which indicates the degree to its demand was satisfied. xi is the
ratio of allocated resource to privacy demand of data analyst
i, which can be considered as allocation to data analyst i.

To illustrate the shortcomings of bad scheduling, we give
an example in Fig. 2. Consider two data analysts named Alice
and Bob, two data blocks B1, B2 whose total privacy budget
is 1.0. Alice has two pipelines (P1, P2). Pipeline P1 demands
(0.5, 0.3) for (B1, B2), where the normalized privacy demand
(γ<1>, γ<2>) for (B1, B2) is (0.5, 0.3) and maximum share
µ is 0.5. Pipeline P2 demands (0.3, 0.5) for (B1, B2), where
the normalized privacy demand (γ<1>, γ<2>) for (B1, B2)



is (0.3, 0.5) and maximum share µ is 0.5. Bob also has
two pipelines (P3, P4). Pipeline P3 demands (0.4, 0.3) for
(B1, B2), where the normalized privacy demand (γ<1>, γ<2>)
for (B1, B2) is (0.4, 0.3) and maximum share µ is 0.4. Pipeline
P4 demands (0.3, 0.3) for (B1, B2), where the normalized
privacy demand (γ<1>, γ<2>) for (B1, B2) is (0.3, 0.3) and
maximum share µ is 0.3.

In this example, DPK [15], which is the state-of-the-art pri-
vacy scheduling method focusing on efficiency and allocating
resources to the pipeline with the lowest weight-to-demand
ratio, allocates pipeline P3 and P4 shown in the left side of
Fig. 2. In addition, DPF [18], which is the state-of-the-art
privacy scheduling method focusing on fairness and allocating
resources to the pipeline with the smallest dominant share, gets
the same allocation result as DPK. Efficiency can be evaluated
with dominant share and leftover privacy resources. Based on
the definition in (3), the overall dominant share of DPF and
DPK solution is 0.7. From the perspective of leftover privacy
resources, DPF and DPK waste 0.3 B1 and 0.4 B2. We can
figure out another solution shown on the right side of Fig.
2, pipeline P1 from Alice and pipeline P3 from Bob can be
satisfied at the same time. Furthermore, this allocation result
leaves less unused resource, as it leaves 0.1 B1 and 0.4 B2

unused, and achieves 0.9 overall dominant share. Furthermore,
it’s much fairer because there is no analyst who occupies all
the privacy resources.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the threat model and
the entities involved in our framework. Then, we formally
formulate the privacy resource allocation in FLaaS platforms
as an optimization problem.

A. Threat model

In the FLaaS platform, the data analysts submit multiple
pipelines and receive them after being trained by the private
data held by vast data contributors. The trained pipelines
exposed to data analysts or other entities, although does not
explicitly contain the raw data, still leak sensitive information
of the individual data contributors and are vulnerable to
privacy threats such as membership inference attacks [28] or
data reconstruction attacks [29]. To tackle the privacy threats,
we apply the DP model, which restricts information leakage by
introducing randomness to the outputs, to the trained pipelines
[11]. In the FLaaS platform, one data block may be utilized
in training multiple pipelines, where an adversary has an
increased ability in performing attacks with an aggregated
view of multiple pipelines. Therefore, we propose privacy
budget scheduling mechanism in the FLaaS platform, where
each data block satisfies (α, ϵ)-RDP over the whole execution
after careful DP assignment on each pipeline.

B. System overview

The framework of DPBalance is depicted in Fig. 3 and it
considers three entities: Data analysts, FLaaS platform, and
data contributors. Data contributors can be mobile phones,
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Fig. 3. Framework of DPBalance

tablets, or other edge devices with growing databases. In this
system, Q edge devices join the FLaaS platform training and
each participant has its own database partitioned in many data
blocks by time. We denote the number of data blocks from all
edge devices in total as K. We assume there is no edge device
in and out and data on devices are continuously generated.

Our framework includes M data analysts, and each data
analyst i consists of Ni pipelines. FL pipelines are associated
with their training demands. A pipeline can only be success-
fully executed if its training demand is met. Pipelines are
willing to get data blocks with more privacy loss as possible
because it could improve the performance of trained pipelines.
In addition, we assume data analysts are greedy and selfish.
Greedy means the data analyst wants to satisfy more pipelines
and selfish means the data analyst wouldn’t return the resource
back if its pipelines could benefit from it. The main objective
of the FLaaS platform is to allocate a certain amount of data
blocks efficiently and fairly under limited privacy resources.
An unfair allocation scheme would discourage data analysts
from participating and an inefficient allocation scheme would
cause a waste of privacy resources.

Next, we briefly introduce the workflow of our system in
Fig. 3. In the training demand formulation part, the scheduler
collects data analysts’ general demand, including the number
of demanding devices N , privacy budget −→ϵj and time interval−→
Tj of demanding blocks, and randomly selects a set of N edge
devices

−→
Nj . After getting the privacy demands, the scheduler

allocates privacy resources and sends results to the platform.
Then, the platform distributes successfully allocated pipelines
to the target devices for training and aggregates.



C. Privacy resource model
We partition each device’s local data into many data blocks

by time and partition granularity can be hour, day, or month.
Each FL pipeline can specify the data blocks from a certain
range of time. Every time the FL pipeline is trained on a local
device, data blocks would lose part of their privacy. As time
goes by, private data used for training FL pipelines would grow
and get retired after exposing a certain amount of privacy. Data
blocks can serve other FL pipelines before retirement.

We define the privacy budget of data contributor i’s whole
dataset as ϵgi and any privacy budget of data block j of it as ϵgij .
We define device i’s privacy loss as ϵci and any privacy budget
of data block j of it as ϵcij . We assume privacy loss should not
exceed privacy budget (ϵci ≤ ϵgi , ϵ

c
ij ≤ ϵgij). Furthermore, we

assume different edge device i has different privacy budget ϵgi .
In addition, to keep (α, ϵi)-RDP for edge device i, data block
j on edge device i holds the same privacy budget as the global
budget held by each edge device (ϵgij = ϵgi ). Furthermore, we
assume the privacy allocation follows one-or-more property.

Definition 7 (One-or-more). A pipeline from a data analyst
would be successfully allocated if and only if its allocated re-
source is equal to or more than its minimal demand. Formally
speaking, it can be represented as follows:

D′ = κD,κ ≥ 1, (5)

where D is the privacy demand vector of this pipeline, and
D′ is the vector representing the amount of privacy resource
allocated to the pipeline.

This property is unique to privacy resources, while tradi-
tional resources (e.g. CPU, memory) do not have.

D. Data analyst’s efficiency model
Before defining the platform’s utility, we define the data

analyst’s efficiency first. We adopt dominant share, weighted
by the data-pipeline matching degree and pipeline delay time
as the efficiency of a data analyst. Pipeline delay time means
how long a pipeline has been waiting since it proposes
training demand. The data-pipeline matching degree means
the importance of a certain data block to a certain pipeline
measured by training loss [14] [30]. We assume longer delay
time and lower training loss bring lower efficiency. We use the
weighted average of the training losses lij of all data blocks
on device i to represent the training loss li of this device.

li =

n∑
j=1

µij∑n
j=1 µij

lij . (6)

The data analyst’s efficiency is defined as follows:

Definition 8 (Data analyst’s efficiency). Data Analyst’s Effi-
ciency is defined as data analyst i’s dominant share weighted
by waiting time coefficient T (ti) and training loss li.

Ui(xi) = µixiT (ti)li, (7)

where T (ti) can be any monotonic decreasing function of data
analyst’s waiting time ti.

E. Platform’s utility model

The platform’s utility considers two perspectives. First,
it pursues a higher overall efficiency for all data analysts.
Second, it tries to balance the efficiency of the data analysts
for fairness. Therefore, we present to model the platform’s
utility incorporating both efficiency and fairness.

For the efficiency, we define the following dominant effi-
ciency to represent the platform’s efficiency.

Definition 9 (Dominant efficiency). Dominant efficiency is
defined as the summation of all data analysts’ efficiency

m∑
i=1

Ui(xi). (8)

For the fairness metric, we consider data analyst-level fair-
ness, which means we consider fairness among data analysts.
We give the formal definition of dominant fairness.

Definition 10 (Dominant fairness). We define dominant fair-
ness fβ(xi) from the perspective of dominant share µixi,
average delay time ti, and weighted average training loss li.

fβ(xi) = sgn(1− β)

( m∑
i=1

( Ui(xi)∑m
i=1 Ui(xi)

)1−β
) 1

β

, (9)

where sgn(·) is the signum function and β can be consid-
ered as the fairness preference of platform manager.

After that, we combine the efficiency metric and fairness
metric and formulate the platform’s utility function as

Ψλ(xi) = sgn(1− β)

( m∑
i=1

( µixiT (ti)li∑m
i=1 µixiT (ti)li

)1−β
) 1

β

(

m∑
i=1

µixiT (ti)li)
λ,

(10)
where λ is the efficiency preference of the platform manager.

When λ = | 1−β
β |, (10) can be transformed into

max sgn(1− β)

( m∑
i=1

(
µixiT (ti)li

)1−β
) 1

β

, (11)

which is equivalent to the famous α-fairness function [31]

max

m∑
i=1

(
µixiT (ti)li

)1−β

1− β
. (12)

F. Problem formulation

From the perspective of the FLaaS platform, we aim at
maximizing the platform’s utility. Formally, we can formulate
our problem as



max Ψλ(xi), (13)

s.t.

m∑
i=1

γ<k>
i xiT (ti)li ≤ 1,∀k ∈ [1,K], (14)

γ<k>
i =

ni∑
j=0

γ<k>
ij xij ,∀i ∈ [1,M ],∀k ∈ [1,K], (15)

xij = 0 or xij ≥ 1. (16)

This optimization problem is constrained by resource avail-
ability in (14), where γ<k>

i specifies the normalized demand
that data analyst i wants for resource k. Constraint (15) repre-
sents the demand of data analyst i is composed of demands of
all its pipelines. Constraint (16) is designed because of one-
or-more property.

V. ALGORITHM DESIGN AND THEORETICAL ANALYSIS

A. Algorithm design

The original optimization problem is non-convex and dis-
continuous because constraint in (16) contains a discrete point
xij = 0. Classical solutions for mixed integer optimization
problems, including the branch and bound method, dynamic
programming, and cutting plane method, are iterative and
cannot provide a closed-form solution, which makes it hard
to analyze the economic properties. Therefore, we decompose
the original problem into two sub-problems. The first sub-
problem is to allocate privacy resources among data analysts
and is formulated as

max Ψλ(xi), (17)

s.t.

m∑
i=1

γ<k>
i xiT (ti)li ≤ 1,∀k ∈ [1,K], (18)

xi ≥ 0. (19)

The second sub-problem is to reallocate privacy resources
among pipelines in one data analyst to cover more pipelines.
It is formulated as

max
n∑

j=1

µijxijT (tij)lij , (20)

s.t. γ<k>
i xi =

ni∑
j=0

γ<k>
ij xij ,∀i ∈ [1,M ], (21)

xij = 0 or xij ≥ 1. (22)

We then propose a novel sequential allocation algorithm
to solve them. The detailed algorithm is presented in Algo-
rithm. 1. After decomposition, the first optimization problem
becomes convex and continuous. We first assemble pipelines’
training demands to formulate data analyst i’s training demand
and calculate its maximum share of all required resources µi

using (3) (line 1). We then solve the optimization problem in
(17) along using Lagrange multiplier method and output each
data analyst’s allocation result X (line 2).

We solve the second sub-problem in a greedy heuristic
way, and the general policy is to return unused resources to

the resource pool (line 4). To satisfy the greedy and selfish
characteristics of data analysts mentioned in Section IV and
cover more pipelines in one data analyst, we temporarily
relax the one-or-more property in (22) into integer constraint
shown in (24). For each data analyst i, we get the successfully
allocated pipelines set χi by solving problem in (23) (line 5).

max
∑
j

Γ(xij),∀i ∈ [0,M ], (23)

where

Γ(x) =

{
1, xij ≥ 1,

0, xij = 0.
(24)

This action is to allocate fewer resources to each analyst
and select as many pipelines as possible. Secondly, to make
full use of allocated resources for data analysts, we choose
to set xij ∈ χi and maximize the second sub-problem in
(20) using the commercial Gurobi solver [32] (line 6). Each
data analyst i returns unused privacy resource back if there is
privacy resource left or its γij from pipeline j with minimal
µij Pareto-dominates than data analyst i’s share γixi because
of one-or-more property (line 7), where the latter means left
resource can not meet the minimal requirement of any pipeline
in the data analyst. This behavior is also a kind of economizing
behavior, which can give resources to the data analyst who
will come continuously in the future. Finally, the coordinator
assembles all pipelines’ allocation result and form the global
allocation result X ′ (line 8).

We further use the allocation example in Fig. 2 to illustrate
how our algorithm works. Firstly, we set fairness preference
β = 2.2 and efficiency preference λ = β−1

β . Then, we
assemble data analysts’ training demands by adding up all
its pipelines’ demand. After that, we solve the optimization
problem in (17) along with its constraints and get two data an-
alysts’ output. Alice gets (0.5, 0.5) for (B1, B2), and Bob gets
(0.5, 0.42) for (B1, B2). As both data analysts are allocated
with partial resources, they do not need to return resources to
the resource pool. Then, by maximizing the optimization in
(20) along with constraints, we can get the resource allocation
of two data analysts to their pipelines. Alice allocates (0.5, 0.3)
of (B1, B2) to pipeline P1. Bob allocates (0.5, 0.375) of
(B1, B2) to pipeline P3. Finally, Alice returns 0.2B2 and Bob
returns 0.045B2 back. In this way, our algorithm achieves 1.0
dominant efficiency and allocates 2.25 pipelines, while DPF
and DPK only achieve 0.7 dominant efficiency and allocates
2 pipelines successfully.

B. Four key properties of fairness

In this subsection, we introduce four definitions of key
properties for fairness, and prove under what conditions these
properties can be satisfied.

Definition 11 (Pareto Efficiency (PE)). Suppose that we have
2 vectors x and y, if xi ≥ yi for any index i and xj > yj for
some index j, we denote x Pareto-dominates y.



Algorithm 1 Sequential allocation algorithm in DPBalance
Input:

The training demand of all the pipelines, dij =
[d<1>

ij , d<2>
ij , ..., d<K>

ij ], i ∈ [1,M ], j ∈ [1, N ];
The delay time of all the data analysts’ pipelines, t =
[t1, t2, ..., tM ];
The training loss of all the data analysts’ pipelines, l =
[l1, l2, ..., lM ], where li = [li1, li2, ..., liM ];
The hyper-parameter β and λ;

Output:
Allocation result, X ′ = [x1, x2, ..., xm], xi =
[xi1, xi2, ..., xiN ],∀i ∈ [1,M ];

1: Calculate data analyst i’s maximum share of all the
required resource µi and γij using (3);

2: Solve the first sub-problem in (17) along with constraints
in (18)) and (19), and output the data analyst i’s primary
allocation result X;

3: for each data analyst i do
4: Return allocated resource if γij from pipeline j with

lowest µij Pareto-dominates γixi and break;
5: Maximize the optimization problem in (23) with con-

straints and get the successful allocated pipeline set χi;
6: Maximize optimization problem in (20) and form

pipeline’s allocation result xij ;
7: Return unused privacy resources back.
8: Assemble all the pipelines’ allocation results from all

data analysts and form the final allocation result X ′;
9: end for

10: return X ′;

In other words, data analyst cannot increase its utility
without decreasing others’ utility. Mathematically speaking,
if demand x′

i Pareto-dominates xi, then Ψ(x′
i) > Ψ(xi).

Theorem 1. The solution for the optimization problem in (10)
is PE if and only if when β > 0 and |λ| ≥ |1−β

β |.

Proof. See Appendix A in the technical report [33].

Definition 12 (Sharing Incentive (SI)). A sharing incentive
allocation xi to data analyst i satisfies the sharing incentive
property if each data analyst i gains more utility than the
evenly fair share result x′

i, i.e.,

Ui(xi) ≥ Ui(x
′
i).

In other words, there is no incentive for data analysts to ask
servers to partition privacy resources equally.

Theorem 2. The solution to the original optimization problem
in (13) satisfies SI (or not) as follows.

(a) SI is satisfied when β > 1 and λ = β−1
β .

(b) SI is not satisfied when 0 < β < 1 and λ = β−1
β .

(c) SI is satisfied when λ = 0 for any β.
(d) SI is not satisfied when λ = ∞ for any β.

Proof. See Appendix B in the technical report [33].

Next, we would like to define envy-freeness:

Definition 13 (Envy-Freeness (EF)). This property holds if
and only if any data analyst i would not envy other data
analyst’s allocation. Mathematically speaking, data analyst
i and data analyst j get the allocation xi and allocation
xj respectively in our allocation scheme. Suppose that data
analyst i envies data analyst j’s allocation xj , it’s impossible
that data analyst i gets more utility with data analyst j’s
allocation result xj .

Theorem 3. The solution to the original optimization problem
in (13) satisfies EF (or not) as follows.

(a) EF is satisfied when β > 1 and λ = β−1
β .

(b) EF is not satisfied when 0 < β < 1 and λ = β−1
β .

(c) EF is satisfied when λ = 0 for any β.
(d) EF is not satisfied when λ = ∞ for any β.

Proof. See Appendix C in the technical report [33].

Definition 14 (Strong Strategy Proofness (SSP)). It depicts
that a data analyst can not increase both its utility and non-
dominant share by lying about its training demands.

Definition 15 (Weak Strategy Proofness (WSP)). It depicts
that when a data analyst lies about its training demands, it
may increase its utility but decrease its non-dominant share.

Both definitions of Strategy Proofness (SP) mean data ana-
lyst has no incentive to lie about training demands. Under SSP,
there would be no benefit from lying. Under WSP, lying about
training demand may increase its utility, but it may also reduce
non-dominant shares. Unlike the traditional resource allocation
where training demands must be strictly proportional to each
resource, getting extra non-dominant privacy resources may
also help data analyst to finish more pipelines or increase some
pipeline’s accuracy as the data analyst’s training demand is
composed of pipelines’ training demands.

Theorem 4. The solution to the original optimization problem
in (13) satisfies SP (or not) as follows.

(a) WSP is satisfied when β > 1 and λ = β−1
β .

(b) Neither WSP nor SSP is satisfied when 0 < β < 1 and
λ = β−1

β .
(c) SSP is satisfied when λ = 0 for any β.
(d) SSP is satisfied when λ = ∞ for any β.

Proof. See Appendix D in the technical report [33].

C. Fairness-efficiency tradeoff

In this subsection, we theoretically analyze the relationship
between efficiency and fairness by examining the monotonicity
of these two metrics. For simplicity, we take α-fairness func-
tion to discuss the tradeoff. As mentioned, when λ = | 1−β

β |,
the original optimization problem can be degenerated into the
famous α-fairness function in (12), where α can be considered
as the fairness measurement [34] [35] [36]. The larger β
(β = α) is, the fairer the utility is. When β = 0, it means
our utility function in (12) only focuses on efficiency. When
β approaches ∞, our utility function becomes the fairest.



Theorem 5 (Efficiency non-increasing property). Efficiency is
non-increasing as β increases if and only if when

M−K∑
i=1

τi detAi ≥ 0. (25)

Proof. Let R be the M × K matrix that has full row rank.
M −K is the dimension of the null space. Let zi be the basis
of the null space of R, where i = 1, 2, ...,M −K. Collect all
zi to form the matrix Z = [z1, z2, ..., zM−K ]. Then, we let D
be the Hessian matrix of our utility function in (12) and let
b = ∂U

∂x∂β . According to [34], we can get that

∂E

∂β
= 1TZ(ZTDZ)−1ZT b. (26)

Let A = ZTDZ, we can further infer that the conditions
for that efficiency are non-increasing as α increases.

We find efficiency is non-increasing with fairness as shown
in Theorem 5. In other words, there exists a tradeoff between
efficiency and fairness when the conditions in Theorem 5
are satisfied. Furthermore, we discuss two scenarios that the
tradeoff between efficiency and fairness doesn’t exist. More
specifically, we discuss the scenarios in which the allocation
result can be the most efficient and fairest at the same time.
As α is the measure of fairness, the fairest allocation scheme
is max-min fairness when α approaches ∞. Thus, the equal-
weighted dominant share is the fairest allocation result. To get
the most efficient allocation result, it’s essential to ensure as
many resource constraints are tight as possible. We divide it
into two scenarios: K < M and K = M .

Theorem 6 (Fairest and most efficient allocation scheme (I)).
The equal-weighted dominant share scheme makes K = M
constraints tight if and only when

M∑
i=1

γ<k>
i

µi
= C, (27)

for any data analyst i who requests K resources, and C is a
constant.

Proof. See Appendix E in the technical report [33].

Theorem 7 (Fairest and most efficient allocation scheme (II)).
The equal-weighted dominant share scheme makes K < M
constraints tight if and only if when at least one data analyst
i’s dominant share µixi = 0, which means at least one data
analyst is allocated no dominant share.

Proof. See Appendix F in the technical report [33].

In the first scenario, DPBalance outputs equal share for each
data analyst when each data analyst has the same weighted
dominant share. In the second scenario, DPBalance outputs
zero share for data analysts with zero weighted dominant
share. Therefore, DPBalance covers these two special scenar-
ios when conditions in Theorem 6 or Theorem 7 are satisfied.

VI. EVALUATION

In this section, we evaluate DPBalance regarding its effi-
ciency and fairness. We aim to answer the following questions:

Q1: How does DPBalance compare to other baseline
scheduling methods?

Q2: How does fairness preference β affect dominant effi-
ciency and dominant fairness?

Q3: Can we empirically validate the existence of the trade-
off between dominant efficiency and dominant fairness when
the condition of Theorem 5 is satisfied?

Metrics: We use the following four metrics to measure the
performance of DPBalance and baselines.

• Cumulative efficiency is the sum of the dominant effi-
ciency defined in (8) of all rounds.

• Cumulative fairness is the sum of the dominant fairness
defined in (9) of all rounds.

• Round efficiency is the dominant efficiency defined in (8)
of current training round.

• Round fairness is the dominant fairness defined in (9) of
current training round.

Round efficiency and round fairness are designed to testify
if the tradeoff for a single round exists.

Baselines: We compare DPBalance with three baseline
scheduling algorithms, DPK [15], DPF [18] and First-Come-
First-Serve (FCFS). DPK allocates resources to the pipelines
with lowest weight-to-demand ratio. DPF allocates resources
to pipelines with smallest dominant share. First-Come-First-
Serve (FCFS) allocates resource to pipelines who arrive first.

Simulation Setup: For the resource side, we create 100
edge devices and each device’s global privacy budget ϵg
follows the Uniform distribution, namely ϵg ∼ U(1.0, 1.5).
For each device, two new blocks are created every 10 seconds.
For the data analysts side, we assume 6 data analysts, each of
whom with 25 pipelines, come every 10 seconds following the
Poisson process. Depending on the amount of demanding pri-
vacy resources, we generate two types of pipelines, 75% mice
and 25% elephant pipelines following the setting in DPF [18].
For mice pipeline, it demands data blocks with privacy demand
ϵ ∼ U(0.005, 0.015). For elephant pipeline, it demands data
blocks with privacy demand ϵ ∼ U(0.095, 0.105). For each
pipeline, it demands the latest 10 data blocks with a probability
of 0.25 or the latest 1 data block with a probability of 0.75.
After being generated, all pipelines are shuffled and put into
different data analysts, each of whom consists of 25 pipelines.
For each data analyst, it either demands 0.2 of all devices or
all the devices with probability 0.5 and 0.5 respectively.

A. Comparison with baselines (Q1)

We compare DPBalance with other baseline scheduling
methods. We show the cumulative round efficiency and cu-
mulative round fairness in Fig. 4 and Fig. 5 respectively.
We choose three different fairness preference β to represent
efficiency-preferred (β = 0.5), efficiency-fairness-unbiased
(β = 2.2), fairness-preferred (β = 5.0) situation. We take
the last round (round 10) as an example. For efficiency,
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Fig. 4. Comparison of cumulative efficiency under different fairness preference settings
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Fig. 5. Comparison of cumulative fairness under different fairness preference settings
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Fig. 6. Validation of efficiency-fairness tradeoff in two rounds

DPBalance outperforms than other three baselines by im-
proving 1.44× ∼ 3.49×, 1.41× ∼ 3.04×, 1.67× ∼ 2.28×
on average under the efficiency-preferred, efficiency-fairness-
unbiased and fairness-preferred situation respectively. For fair-
ness, DPBalance outperforms the other three baselines by
improving 1.37× ∼ 9.66×, 1.77× ∼ 15.58×, 1.82× ∼
24.32× on average under the efficiency-preferred, efficiency-
fairness-unbiased and fairness-preferred situation respectively.
Therefore, DPBalance outperforms the other three scheduling
baselines on cumulative round efficiency and cumulative round
fairness under different fairness preferences.

B. Impact of fairness preference β (Q2)

We examine the performance of DPBalance under different
fairness preference β increases in Fig. 6. As fairness prefer-
ence β grows from 0 to 5, which means allocation becomes
more fair-preferred, round efficiency and cumulative efficiency
decrease 48% and 38% respectively. As fairness preference β
grows from 0 to 5, round fairness and cumulative fairness
increase 257% and 119% respectively. Therefore, β can serve

as a controlling knob for the system manager to adjust fairness
and efficiency.

C. Validation of tradeoff (Q3)

In addition to theoretical proof, we also validate the tradeoff
between fairness and efficiency using the result of a randomly
selected round. The round efficiency and round fairness are
normalized for a better comparison. For a randomly selected
round in Fig. 6(a), round efficiency decreases and round
fairness increases as fairness preference β increases from 0
to 5. For the last round in Fig. 6(b), similarly, cumulative
fairness increases, and cumulative efficiency decreases as fair-
ness preference β increases. Therefore, the tradeoff between
dominant efficiency and dominant fairness does exist when
conditions in Theorem 5 are satisfied, which verifies the proof
of the tradeoff in Section V-C.

VII. CONCLUSION

FLaaS is an emerging cloud-based service that facilitates
FL-based model training over crowdsourced data owners. Due
to the intrinsic properties of DP, privacy budget set by data
owners have to be carefully allocated to different data analysts
to improve system efficiency and data analyst fairness. Ex-
isting privacy budget scheduling mechanisms consider either
efficiency or fairness only. This paper completes the missing
piece by proposing a new mechanism, DPBalance, that jointly
optimizes efficiency and fairness. We prove theoretically that
DPBalance guarantees four key economic properties and there
exists an fairness-efficiency tradeoff in practical situations.
Extensive experiments further demonstrate the superiority of
DPBalance in efficiency and fairness performance.
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[24] I. Mironov, “Rényi differential privacy,” in Proc. IEEE Comput. Secur.
Found. Symp. (CSF), Aug. 2017, pp. 263–275.

[25] M. Uchida and J. Kurose, “An information-theoretic characterization of
weighted alpha-proportional fairness,” in Proc. IEEE Int. Conf. Comp.
Commun. (INFOCOM), Apr. 2009, pp. 1053–1061.

[26] T. Lan, D. T. H. Kao, M. Chiang, and A. Sabharwal, “An axiomatic
theory of fairness in network resource allocation,” in Proc. IEEE Int.
Conf. Comp. Commun. (INFOCOM), Mar. 2010, pp. 1343–1351.

[27] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource allocation:
Fairness–efficiency tradeoffs in a unifying framework,” IEEE/ACM
Trans. Netw., vol. 21, no. 6, pp. 1785–1798, May 2013.

[28] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proc. IEEE Symp.
Secur. Privacy (S&P), Jun. 2017, pp. 3–18.
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