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ABSTRACT
Federated Learning (FL) enables collaborate model training without
privacy violation, where clients periodically report their updates to
the server in communication rounds. Due to heterogeneous resource
and limited bandwidth, FL processes often suffer from low efficiency.
Existing works in that regard are oblivious to the intra-round ex-
ecution status on clients; however, such status information has
great potential to support flexible efficiency optimizations. In this
paper, we propose FedCA, a novel mechanism that allows clients
to autonomously exploit intra-round training status for higher ef-
ficiency. We first devise a metric to help quantify the statistical
contribution of different iterations in a round, which can be effi-
ciently profiled at runtime with the periodical sampling strategy.
With the instantaneous system and statistical status, to improve
computation efficiency, clients under FedCA can adaptively deter-
mine the intra-round workloads based on a utility function. Besides,
to mitigate the communication bottleneck, for some parameters
attaining fast local convergence, clients under FedCA can eagerly
transmit their updates to the FL server prior to round completion.
We implemented FedCA atop PyTorch, and large-scale experiments
show that it can improve FL efficiency by over 15%.
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1 INTRODUCTION
Federated Learning (FL) [12, 22] is an effective paradigm that al-
lows massive edge clients to jointly train a neural network model
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without revealing their private data. Confronting limited network
bandwidth, existing FL practices typically adopt the FedAvg [22]
algorithm for client collaboration: the FL clients first pull the latest
model parameters from the FL server, and then—after multiple local
iterations—report the updated model parameters back to the server
for synchronization. Such a procedure is called a round and will
repeat until model convergence.

Low training efficiency is a well-known hurdle for realistic FL
deployment, which involves both the computation and communica-
tion aspects. Regarding the computation efficiency, the computing
capability of typical FL clients (like cellphones or IoT devices) are
quite limited and also highly dynamic; in particular, there usually
exists strong system heterogeneity among clients [19], and those
stragglers (i.e., with slower computing speed than others) may slow
down the entire training process [3, 15, 33]. Regarding the com-
munication efficiency, due to the poor network condition of edge
devices, the model synchronization process remains a remarkable
performance bottleneck for FL [5, 21].

In the literature, many research works have been proposed to im-
prove the computation and communication efficiency of FL. For ex-
ample, to address computation heterogeneity, some works [3, 15, 24]
proposed to select a portion of clients with more consistent comput-
ing speed to participate in FL, and another work FedBalancer [28]
proposed to properly set the aggregation deadline of each round.
Meanwhile, to reduce the communication cost, existing works in-
clude quantization [4, 12], sparsification [5, 8] and synchronization-
frequency tuning [6, 17, 30]. While proven effective, these methods
nonetheless neglect significant optimization opportunities by being
server-autocratic. That is, due to the privacy constraint and mon-
itoring inconvenience, the intra-round training status on clients
(at iteration granularity) is treated as a black box; the efficiency
optimization decisions are made on the FL server and enforced on
all the clients indiscriminately.

In fact, the instantaneous training status during the local itera-
tions of a round, which is accessible only by the client itself, has
great potential to enable intra-round optimizations. For example,
a cellphone participating in FL may suddenly slow down when
the user opens another app competing for computing resources; in
that case, that cellphone shall proactively reduce its local iterations
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to avoid being stragglers. Besides, in the communication perspec-
tive, some parameters may converge faster than others during the
local iterations on a client; to mitigate the network bottleneck,
they can be immediately communicated to the FL server to enable
computation-communication overlap. Note that, due to the loosely-
coupled nature of FL, the instantaneous training status is highly
heterogeneous on different clients in both system and statistical
aspects. To fully unleash the intra-round optimization capabilities,
we thus need to grant the FL clients with sufficient autonomy to
timely react to the runtime training characteristics.

In this paper, we propose Federated Learning with Client Au-
tonomy (FedCA), a novel FL mechanism that enables flexible intra-
round optimizations on clients. We note that in FL, the server is
insensitive to the intra-round training strategies on clients as long
as they can yield identical updates as the default setup. Therefore,
clients under FedCA need to improve the computation and com-
munication efficiency with minimum change of the accumulated
per-round update. For clarity, we introduce a metric, statistical
progress, to quantify the similarity between the cumulative update
so far and the expected update after a standard round. We find that
each client has distinct curves on how statistical progress increases
with the number of local iterations, and such curves are inconsistent
across different layers even for the same client. With the knowledge
of such statistical progress curves and instantaneous system status,
to attain higher training efficiency, clients can autonomously decide
whether to terminate the local training iterations or whether to
eagerly transmit the early-converged layers. Our FedCA design
further addresses three immediate challenges.

First, statistical progress curves—which are crucial for intra-
round optimizations—shall be acquired efficiently and also apriori
on each FL client. This renders it infeasible to naively record the
model snapshot after each iteration. To address that challenge, we
leverage the observations that the statistical-progress curves are
similar across consecutive rounds and also across parameters within
the same layer, and propose the periodical sampling strategy. That
is, each client gets the statistical progress curves by analyzing only
a few sampled parameters in each layer, once for multiple rounds.

Second, when reducing the local iterations for better computa-
tion efficiency, clients also need to consider the statistical value of
the iterations-to-skip to ensure accuracy validity. To this end, we
design a utility function that combines the system and statistical
impacts of training for an additional iteration, which can guide
clients to determine whether to terminate the local computations.

Third, eagerly transmitting the early-converged layers can mit-
igate the communication bottleneck, but due to the approxima-
tion in periodical sampling, the early-convergence diagnosis of
some layers may turn out inaccurate for the current round. For
such layers, which can be identified by the error between their
eagerly-transmitted values and the actual ones in the end, we can
re-transmit them after round completion.

We have implemented FedCA in PyTorch, and further evaluated
its performance with a 128-node EC2 cluster emulating realistic FL
setups. In our experiments, when confronting heterogeneous and
dynamic resources, FedCA can attain a convergence speedup of over
15%. In particular, for the WideResNet-28 model, FedCA surpasses
the second best method by 71.5% in per-round time and 45.3% in
the overall time to reach a near-optimal accuracy. Meanwhile, we

confirm that FedCA is in general robust to hyperparameter variation
and the overhead it incurs is also negligible.

2 BACKGROUND
2.1 FL Basics
In Federated Learning (FL) [12, 22], a multitude of edge clients,
such as smartphones and IoT devices, collaboratively train a global
model using their local datasets. More specifically, in FL there is
a central server maintaining the global model, and client updates
are synchronized for global model refinement in communication
rounds; under the de facto FedAvg algorithm, each round includes
multiple local iterations to reduce the communication-computation
ratio. While FL can protect data privacy, due to the loosely coupled
nature, the resource quality of the FL participants is much worse
than that in dedicated clusters, which manifests in three aspects:

• Low capability. For typical FL clients, both the computing
power and communication bandwidth are inadequate.

• Heterogeneity. Across different FL clients, the computing
capabilities and data distributions are usually heterogeneous.

• Dynamicity. On a given FL client, the available resources are
dynamic during the local training process.

Given the resource issues above, realistic FL practices have long
been plagued by poor efficiency in both computation and communi-
cation. In particular, heterogeneous and dynamic resource quality
often leads to the straggler problem [3, 15], which means that some
participants with inferior resources would delay the end-of-round
synchronizations. Meanwhile, in the communication aspect, exist-
ing study has shown that model update transmission is a severe
performance bottleneck for FL [5]: when training a CNN model
under a realistic FL setup, over a half of the training time might
be spent purely on communication. Therefore, to make FL more
efficient, it is of paramount significance to mitigate the straggler
effect as well as the communication bottleneck.

2.2 Prior Arts andTheir Limitation
Many research works have been proposed to improve FL efficiency
by respectively addressing the straggler problem and mitigating the
communication bottleneck. We briefly go through those methods
and summarize their common limitations.
Handling stragglers. Some works like Oort [15] and REFL [3]
proposed to proactively evade stragglers by conducting cautious
client selection; some other works propose to reactively suppress
the negative impact of stragglers by not waiting for the late-arriving
client updates. For example, the FedAvg algorithm [22] only collects
a fixed portion of updates returned the earliest; FedBalancer [28]
explicitly specifies a deadline and only collects the updates returned
before the deadline. In that regard, FedProx [19] and SAFA [33]
further proposed to try exploit the lately-returned updates from
the stragglers to attain faster convergence. Recently, FedAda [39]
proposes to mitigate stragglers by having the FL server adaptively
adjust the intra-round workloads of the straggling clients.
Mitigating communication bottlenecks. To reduce the data
transmission amount in each synchronization, quantization [4, 12]
and sparsification [5, 8] are two classical methods—quantization
means to use fewer bits for each element (originally represented



FedCA: Efficient Federated Learning with Client Autonomy ICPP ’24, August 12–15, 2024, Gotland, Sweden

by 32 bits), and sparsification means to reduce the total number of
elements to be transmitted for each synchronization. Meanwhile, to
reduce the total communication time, some works [6, 17, 30] have
proposed to properly adjust the synchronization frequency based
on the overall resource budget or instantaneous gradient status.
Limitation of existing works. While effective to some extent, the
aforementioned research works however do bear a common limita-
tion: their optimization decisions are server-autocratic by relying on
server-accessible information—yet being agnostic to the intra-round
system and statistical status on individual clients. Admittedly, it
is privacy-vulnerable and also inconvenient to sense intra-round
training status on clients, but such intra-round status is indeed an
informative observation angle with the potential to enable flexible
efficiency optimizations. For example, a FL client may suddenly slow
down in the midst of a training round, and intra-round status per-
ception can immediately trigger straggler-avoiding remediations.
Meanwhile, intra-round status perception can help identify the
parameters attaining early convergence prior to round completion,
whose updates can be immediately transferred to the FL server—a
white-box method that can enable computation-communication
overlap without incurring model staleness. Nonetheless, such intra-
round information—although possessing great potential to further
enhance FL efficiency—can only be accessed by the clients them-
selves; to make use of intra-round information in reality, we must
allow clients to autonomously adjust the local training strategy
based on the iteration-level execution status.
Our objective. In this paper, we plan to introduce client auton-
omy to unleash the power of intra-round system and statistical
information in optimizing FL efficiency, i.e., attaining fast training
convergence. In that regard, we further seek to design effective so-
lutions to respectively alleviate the straggler problem and shorten
the communication time in the critical path. In the next section, we
will empirically study the intra-round training characteristics and
explore the potential efficiency optimization opportunities therein.

3 MOTIVATION
3.1 The Need to Monitor Intra-round Status
With client autonomy, each FL client—based on its instantaneous
execution status—can independently adjust the local computation
and communication strategies for better efficiency. To design ef-
fective strategies, we first need to study the typical intra-round
execution pattern in both system and statistical aspects.

We first take a look at the intra-round system characteristics. It
is straightforward to know that the resource quality of an individ-
ual client is dynamic during the training process. In that regard,
existing studies [3, 14, 36] nonetheless mainly focus on the persis-
tency level (i.e., duration) of client availability, yet our focus here
is to understand the level of resource quantity fluctuations of the
available clients. While traces including such fine-grained hard-
ware status are still absent in the literature, we find client drop-out
can be viewed as an extreme case of shrinking resource quantity,
whose frequency can implicitly reveal the intensity of resource
fluctuation. As reported by a prior study on client availability [36],
which collected device behavior data spanning across 136K users
over a week, about 70% of the clients are available for at most 10
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Figure 1: In our statistical progressmetric, we combine cosine
similarity with magnitude similarity to depict the quality of
the accumulated gradients. In general, the early iterations of
a round usually yield faster statistical progress enhancement.

minutes (in a similar order of magnitude to the duration of a typical
FL training round). Therefore, it can be expected that the resource
quantity of a FL client often changes in the midst of a round.

We then turn to intra-round statistical characteristics, which
is more intriguing and significant. In studying statistical pattern,
we seek to quantify the statistical contributions of different local
iterations in a round, which—as we show later—are nonuniform as
opposed to the uniformity assumption of FedAda [39]. Note that,
each client makes its voice in FL by reporting the accumulated
local update after each round; when clients autonomously adjust
their local training strategy, we need to try preserving the accumu-
lated local updates of each round. Therefore, the knowledge of how
each individual iteration matters for the accumulated local updates
is crucial for making intra-round optimization decisions: first, for
computation optimization, when mitigating stragglers by reducing
the local iteration number, clients need to consider its negative
impact on statistical performance; in the meantime, to improve
communication efficiency, clients also need to rely on intra-round
statistical pattern to identify those early-converged layers for ea-
ger transmission. Next, we will devise a metric to help analyze
intra-round statistical pattern, and then make a series of empirical
measurements to depict the typical statistical patterns.

3.2 Intra-round Statistical Pattern Deep Dive
3.2.1 Statistical Progress: The Metric.

As aforementioned, to study intra-round statistical pattern on
clients, we should design a metric to quantify—after each local
iteration—the similarity between the accumulated update so far and
the expected update after the standard round. We choose to directly
calculate the similarity of the two vectors instead of using implicit
metrics like local loss values or test accuracies, because the latter
ones do not support flexible analysis at per-layer granularity, and
they are meanwhile unstable (if using loss) or compute-intensive
(if using test accuracy).

We then describe our proposed metric, statistical progress. Re-
garding similarity quantization of two vectors, the cosine similarity
metric is often adopted. Yet, cosine similarity itself can not reveal
the magnitude gap of two vectors, and our proposed metric chooses
to combine both cosine similarity and magnitude similarity. To be
concrete, we assume1 that each client by default needs to train
1While for simplicity we assume identical local iteration number across different
clients, our solutions can be easily extended to more general cases with heterogeneous
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Figure 2: The statistical progress curves on two clients at
different stages when training CNN, LSTM and WRN.

for 𝐾 local iterations in each round, and we let 𝐺𝑖 represent the
accumulated local update after training for 𝑖 iterations. In that case,
𝐺𝐾 is the overall accumulated update expected to get from that
round. Then, our statistical progress metric, 𝑃𝑖 , is defined as:

𝑃𝑖 = 𝑆𝑖𝑚𝑐𝑜𝑠 (𝐺𝑖 ,𝐺𝐾 ) ·
min(∥𝐺𝑖 ∥, ∥𝐺𝐾 ∥)
max(∥𝐺𝑖 ∥, ∥𝐺𝐾 ∥)

, (1)

where the first item is the cosine similarity between 𝐺𝑖 and 𝐺𝐾
(each flattened to a vector), and the second item is their relative
magnitude gap. Note that the value of 𝑃𝑖 is always less than 1.
Obviously, with more training iterations (i.e., with larger 𝑖), 𝐺𝑖
would be more closer to𝐺𝐾 , rendering 𝑃𝑖 closer to 1. Moreover, with
the statistical progress metric, we can further judge the statistical
contribution of iteration 𝑖 as 𝑃𝑖 − 𝑃𝑖−1.

Fig. 1 shows a toy example on how the local gradients are ac-
cumulated in a round. During the local training iterations, each
client is essentially refining the model parameters towards its local
optimum, and the statistical contributions of different iterations are
usually not the same: at the early stage of a local round, the model
parameters are usually far from the local optimum, yielding large
and consistent refinement steps (i.e., updates); as the model param-
eters get closer to the local optimum, later iterations tend to yield
more tiny and conflicting refinement steps. Therefore, although the
round shown in Fig. 1 has 7 iterations, the accumulated gradient

local iteration numbers (which is determined by the local dataset size and the batch
size). Meanwhile, while it is the model parameters that are synchronized under FedAvg,
our analysis focuses primarily on the model update (i.e., the gap between two model
versions), which are essentially equivalent. Besides, in this paper we interchangeably
use “gradient” (with the learning rate factor integrated in) and “update”.
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Figure 3: The statistical progress curves for different layers
at different stages when training CNN, LSTM and WRN.

after 3 iterations is already very close to that of the entire round,
indicating that the statistical progress usually increases rapidly
in the beginning yet only marginally in later iterations. Next, we
verify that with testbed measurements.

3.2.2 Empirical Observations.
To empically study the intra-round statistical characteristics,

we build a small-scale cluster with 4 client nodes and 1 server
node. With that cluster we train three models: CNN [16], LSTM and
WideResNet28 (WRN) [37], and their datasets are CIFAR-10 [13],
KWS (Keyword Spotting dataset for speech commands recogni-
tion [32]), and CIFAR-100, respectively. To emulate non-IID data
distribution which is typical in FL, we have the class composition
of each client’s local dataset follow a distinct Dirichlet distribution,
where the concentration hyper-parameter 𝛼 is set to 0.1. Meanwhile,
the number of local iterations in a round is fixed to 250 and we
train each model for 200 rounds. For the other hyper-parameters,
please refer to Sec. 5.1.

For each case, we measure the instantaneous statistical progress
(i.e., the 𝑃𝑖 value as defined in Eq. 1) attained after each local itera-
tion. Note that calculating 𝑃𝑖 requires the knowledge of𝐺𝐾—which
is only available after round completion; we thus record all the
parameter snapshots after each iteration for end-of-round {𝑃𝑖 }𝐾𝑖=1
calculation. In Fig. 2, we show the statistical progress curves of
each model from different clients (Client-0 and Client-1, which are
randomly selected) and also at different training stages (round-10
and round-200, the former representing the early stage and the
latter representing the late one). Further in Fig. 3, we show the sta-
tistical progress curves for each model across different layers (the
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definition of 𝑃𝑖 can be naturally narrowed down for each individual
layer). From those figures, we can learn that the statistical progress
curves exhibit the following characteristics:

1) Diminishing marginal benefit. From Fig. 2 and Fig. 3, we can
see that there is a sharp increase for each curve during the earlier
iterations of each round, and the slopes of those curves soon di-
minish as local training proceeds. For example, for the CNN model,
during a round with totally 250 iterations, the statistical progress
has already reached 80% after merely 20 iterations. Such a pattern
of diminishing marginal benefit is consistent with the illustration
in Fig. 1, confirming that the statistical contributions of different
iterations within a round are indeed not identical. In particular, as
shown in Fig. 3, some layers may converge (i.e., with 𝑃𝑖 be nearly
1.0) quite early2 in a round—like the conv2.weight layer of CNN
at round 200, or the rnn.weight hh l0 layer of LSTM at round 10.
For such layers, by eagerly transmitting their updates to the FL
server, it is possible to mitigate the end-of-round communication
bottleneck without accuracy degradation.

2) Heterogeneity across stages, clients and layers. In both Fig. 2 and
Fig. 3, by comparing the curves at round-10 with those at round-200,
we can learn that the statistical patterns exhibit salient heterogene-
ity across different temporal stages. Meanwhile, within each case
of Fig. 2, the curves from different clients are non-overlapping, indi-
cating the existence of cross-client statistical heterogeneity. Finally,
as shown in Fig. 3, the statistical progress pattern also varies across
different layers. To summarize, the intra-round statistical progress
curve is distinct to each stage, to each client, and also to each layer ;
it is impossible to create a one-size-fit-all model to analytically
depict those curves.

The empirical study above signifies it as a promising way to
exploit intra-round statistical pattern for efficiency optimizations,
which, however, must be conducted by each client independently
at runtime. This also holds for exploiting the intra-round system
status as previously discussed in Sec. 3.1. Therefore, contrary to the
current server-autocratic nature, we need to grant FL clients suffi-
cient autonomy to leverage the instantaneous system and statistical
status for better computation and communication efficiency.

4 SOLUTION
In this paper, we propose Federated Learning with Client Autonomy
(FedCA), a novel mechanism that enables each client to conduct
flexible intra-round optimizations. In principle, based on the instan-
taneous system and statistical characteristics, clients under FedCA
can autonomously adjust the number of local iterations in an ongo-
ing round for better computation efficiency, and can also eagerly
transmit the early-converged layers prior to round completion for
better communication efficiency.

To be more concrete, our FedCA design is mainly composed
of three parts: 1) profiling part—To obtain the statistical progress
curves of each round in advance and also in a resource-efficient
manner, we propose a practical profiling mechanism called pe-
riodical sampling; 2) computation-optimization part—To mitigate
stragglers with minimum accuracy degradation, we devise a utility

2This is indeed reasonable as existing studies [5, 8, 38] have shown that, some input
features may be easier to learn than others, and the parameters related to those features
would converge in fewer iterations—a property called non-uniform convergence [35].
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Figure 4: When training each model, the statistical progress
curves are very similar across consecutive rounds, for both
an early stage (round 10-14) and a late one (round 196-200).

function called net benefit to help clients determine whether to
terminate the local computations of a round; 3) communication-
optimization part—To enable computation-communication overlap
without compromising accuracy, we propose a mechanism called
eager transmission with error feedback. Next, we will respectively
elaborate the detailed solution for each part.

4.1 Efficient Profiling with Periodical Sampling
Recall that in Sec. 3.2, to get the statistical progress curves (shown
in Fig. 2 and Fig. 3), we need to record the accumulated gradient
values after each iteration of a round. Nevertheless, recording those
fine-grained snapshots would incur remarkable memory overhead.
To illustrate, consider training with WRN-28 (36 million parame-
ters): assuming 4 bytes for each parameter, a round with 100 local
iterations would consume a memory space of around 14GB on each
client solely for profiling purposes. Meanwhile, as suggested in
Eq. 1, calculating statistical progress requires the knowledge of𝐺𝐾 ,
which is available only after round completion; however, clients
under FedCA must have the statistical progress curve readily avail-
able before round commencement. In a nutshell, to enable FedCA,
the statistical curves must be obtained efficiently and also a priori.
To that end, observing the gradient trajectory similarity across
consecutive rounds and also across parameters within a layer, we
propose periodical sampling, a composite mechanism composed of
periodical profiling and intra-layer sampling.
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Figure 5: For a randomly selected layer in each model, the
statistical progress curves profiled with the sampled parame-
ters and with all the parameters are quite similar.

Periodical profiling. We first propose periodically estimating
a client’s statistical progress curve, such as once for every five
rounds, rather than doing so for every round. Our key insight is
that a client’s intra-round statistical progress pattern usually shows
strong similarity across consecutive training rounds. As depicted
in Fig. 4 which corresponds to a randomly selected client in the
aforementioned testbed (Sec. 3.2.2), the progress curves for five
consecutive rounds exhibit high resemblance both in the early stage
(rounds 10-14) and the late one (rounds 196-200). Such similarity is
expected since the global model and clients’ data evolve smoothly
over time [21]. With periodical profiling, we can use the progress
curve profiled at an anchor round3 for the subsequent rounds,
alleviating the total memory burden and also making the curves
available a priori. In practical implementation, the profiling period
is a tunable hyperparameter that enables developers to strike an
optimal balance between profiling precision and memory usage.
Intra-layer sampling. Aside from temporal optimization, when
conducting profiling, we also perform spatial optimization by only
recording the updates for a sampled parameter subset in each layer
instead of for the entire model. Specifically, for each layer, we

3Note that we do not adopt any computation or communication optimizations in those
anchor rounds to ensure the completeness and validity of the profiled curves.

randomly choose either 50% or 100 (whichever is smaller) scalar
parameters, and use such a compressed subset to represent the
original layer in profiling statistical progress. This idea is inspired
by the observation that parameters within the same layer tend to
evolve at a similar pace (contrary to those across different layers
as in Fig. 3). To demonstrate this, in Fig. 5, we respectively show
the statistical progress curves profiled with the full layer (in blue
solid lines) and then only with the sampled parameters (in orange
dashed lines). For each model, across different training stages and
layer types, both sets of results consistently align with each other.
This allows us to significantly reduce the peak memory usage by
sampling. For instance, the total number of parameters considered
by our sampling method for WRN will be no more than 10,000,
which indicates a peak memory usage of no more than 4MB, in
contrast to the earlier mentioned 14GB usage with full profiling.

4.2 Early Stopping with Utility Guidance
With statistical progress curves profiled at hand, we can leverage
them to optimize the training efficiency. When optimizing the com-
putation efficiency by proactively adjusting the number of local
iterations on a straggling client, we must consider its negative
impact on the accuracy performance. On one hand, as previously
discussed in Sec. 3, a client’s progress tends to diminish as the
number of iterations increases during a round. On the other hand,
training for a larger number of local iterations consumes more time
and computing power for the client. These facts imply the presence
of a crossover point in a client’s local training, beyond which the
marginal cost exceeds the marginal benefit, rendering subsequent
iterations unnecessary. To identify this crossover point to early
stop a round, we first quantify the marginal cost and benefit.
Quantifyingmarginal benefits. In a round𝑅, the marginal benefit
of a local iteration 𝜏 can be understood as the additional progress a
client achieves with that iteration. Thus, we can define the marginal
benefit, denoted as 𝑏𝑅,𝜏 , as the difference between the statistical
progress of iteration 𝜏 and 𝜏 − 1, represented as 𝑃𝑅,𝜏 and 𝑃𝑅,𝜏−1 re-
spectively (Sec. 3.2). Leveraging the similarity exhibited by a client’s
progress curves across consecutive rounds (Sec. 4.1), we approxi-
mate the marginal benefit by referring to the most recently profiled
anchor round 𝑇 . In particular, note that the statistical progress
curves may not always be rigidly concave (as shown in Fig. 5), we
set a lower bound to tackle the potential curve irregularity. That
lower bound is set as the expected per-iteration improvement of
statistical progress over all the remaining iterations. Putting it all
together, we estimate 𝑏𝑅,𝜏 as:

𝑏𝑅,𝜏 ≜ 𝑚𝑎𝑥 (𝑃𝑇,𝜏 − 𝑃𝑇,𝜏−1,
1 − 𝑃𝑇,𝜏
𝐾 − 𝜏 ). (2)

Quantifying marginal costs. Intuitively, the marginal cost, de-
noted as 𝑐𝑅,𝜏 , should be defined as a non-decreasing function in
the wall clock time a client has spent on local training of a round
𝑅 up to iteration 𝜏 , i.e., 𝑡𝑅,𝜏 . However, simply defining 𝑐𝑅,𝜏 as the
identity function of 𝑡𝑅,𝜏 overlooks the synchronous nature of stan-
dard FL training. In synchronous FL, the server must wait for all
selected clients to complete their local training before it proceeds
to model aggregation. Therefore, it is not beneficial for a client to
prematurely stop its training when the majority of other clients
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have not finished. In other words, there should be a certain time
point determined by the pace of the majority of clients. Below this
point, the marginal cost should increase slowly over iterations;
while beyond it, the cost should rapidly rise to penalize stragglers.
In this regard, we formulate the marginal cost of local training as

𝑐𝑅,𝜏 ≜ 𝑓𝑅,𝜏 ·
𝑡𝑅,𝜏

𝑇𝑅
with 𝑓𝑅,𝜏 =

{
𝛽, 𝑡𝑅,𝜏 ≤ 𝑇𝑅
1, otherwise

, (3)

where𝑇𝑅 is the desired deadline for round𝑅 that allows the majority
of selected clients to complete their local training, and 𝛽 ≪ 1 depicts
the marginal cost ratio before 𝑇𝑅 . Inspired by the deadline setup
strategy in FedBalancer [28], we determine 𝑇𝑅 by maximizing the
ratio of the estimated number of clients that can finish before 𝑇𝑅
to 𝑇𝑅 itself. This way, 𝑇𝑅 will neither be too high to discourage
the early stopping of clients, nor too low to collect enough local
updates for model aggregation.
Navigating the cost-benefit tradeoff with a utility function.
Based on the estimation methodology of marginal benefit and cost,
it becomes possible to determine the point at which the latter sur-
passes the former. Specifically, for each iteration 𝜏 of a client’s local
training in round 𝑅, we define a utility function called net benefit,
represented as 𝑛𝑅,𝜏 , to guide the client to adjust the local itera-
tion number. Given that 𝑏𝑅,𝜏 and 𝑐𝑅,𝜏 are dimensionless quantities
respectively depicting the relative benefit and cost of a single itera-
tion compared to the entire round, we can define 𝑛𝑅,𝜏 by directly
calculating their gap, i.e.,

𝑛𝑅,𝜏 ≜ 𝑏𝑅,𝜏 − 𝑐𝑅,𝜏 . (4)

With this definition, each client can terminate the local training as
soon as 𝑛𝑅,𝜏 turns negative. In this way, our FedCA design imposes
minimal or negligible impact on the overall quality of the global
model, while enhancing the computation efficiency. We validate
this with empirical experiments (Sec. 5).

4.3 Eager Transmission with Error Feedback
In Sec. 4.2, to enhance computation efficiency, we have explored
the idea of early stopping when the marginal cost of training for
an additional local iteration begins to outweigh the marginal bene-
fit; all the analysis and actions in that part is at the granularity of
the entire model. Recall that upon examination at a finer-grained
level (as shown in Fig. 3), we have learned that each layer may
exhibit a unique pace of evolution. By eagerly transmitting the
early-converged layers, we can overlap their communication la-
tency with the computation time of other layers, thereby enhancing
the communication efficiency. In the meantime, we also need to
ensure that the model training quality is not compromised by our
communication optimization strategy.
Layerwise eager transmission upon stabilization. Specifically,
we assess the progress of each model layer 𝑙 during local training
in round 𝑅 up to local iteration 𝜏 , denoted as 𝑃 (𝑙)

𝑅,𝜏
. The method

used for assessment is the same as introduced in Sec. 3.2, with the
only difference being that we here focus on the parameters of a
specific layer rather than of the entire model. When the progress
metric 𝑃 (𝑙)

𝑅,𝜏
surpasses a predefined threshold 𝑇𝑒 ≤ 1, we consider

the corresponding layer 𝑙 as starting to stabilize. For such stabilized

Parallel transmission with error-feedback retransmission

Retrans.

Download model Local training Local updates transmission

Serial client process

Download model Local training

Trans.

Trans.

Trans.

Communication
cost reduction

Figure 6: In our FedCA design, clients can eagerly transmit
the updates of the early-converged layers to the FL server,
which can enable computation-communication overlap and
reduce the communication time in the critical path. Note
that layer-2 is retransmitted to ensure accuracy validity.

layers, as shown in Fig. 6, we can eagerly transmit their updates
to the server to hide the transmission latency behind the local
computation time of the other unstable layers. In this way, we
can reduce the update transmission time in the critical path. Note
that, similar to Sec. 4.2, the statistical progress metric of a layer 𝑙—
𝑃
(𝑙)
𝑅,𝜏

—can only be computed retrospectively; we therefore propose
utilizing the most recently profiled curve from round𝑇 for round 𝑅.
In other words, the eager transmission of layer 𝑙 in round 𝑅 occurs
in iteration 𝜏 when

𝑃
(𝑙)
𝑅,𝜏
≜ 𝑃

(𝑙)
𝑇,𝜏

> 𝑇𝑒 . (5)

Retransmission upon significant deviation. Admittedly, while
there exists strong similarity among the statistical progress curves
of the anchor round and its subsequent rounds, it is still possible
that the statistical progress curve of an ongoing round turns out
divergent from the previously-profiled anchor round. To address
the adverse impact of such curve divergence on model accuracy, we
further introduce an error-feedback mechanism. Specifically, once
the training of all layers is halted at iteration 𝐹 (either due to natural
completion or early stopping as proposed), we check the ultimate
updates of the layers whose updates have been eagerly-transmitted.
Given a layer 𝑙 , supposing its update was eagerly transmitted at
iteration 𝑡𝑅,𝑙 , we let 𝐺 (𝑙)

𝑅,𝐹
denote the ultimate update and 𝐺 (𝑙)

𝑅,𝑡𝑅,𝑙

the reported one. If their cosine similarity falls below a predefined
threshold 𝑇𝑟 < 1, i.e.,

𝑆𝑖𝑚cos (𝐺 (𝑙)
𝑅,𝐹
,𝐺

(𝑙)
𝑅,𝑡𝑅,𝑙

) < 𝑇𝑟 , (6)

indicating that the layer has significantly deviated from the time
it was eagerly transmitted, the client needs to retransmit layer 𝑙
together with the other regular layers, as also shown in Fig. 6. In a
word, we expect to optimize the communication efficiency with no
or mild loss in the final model utility.

5 EVALUATION
5.1 Experimental Setup
Implementation. We have implemented FedCA atop PyTorch, and
the server communicates with clients via RPyC (Remote Python
Call) [1]. After each local iteration, the clients call two functions,
TryEarlyStop() and TryEagerTransmit(), to launch the compu-
tation and communication optimizations as elaborated in Sec. 4.2
and Sec. 4.3. The eagerly-transmitted updates are communicated in
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Figure 7: Time-to-Accuracy curves when training CNN, LSTM and WRN respectively under the four schemes.

a separated thread with the threadings.Thread() API. After each
round, each client calls TryRetransmit() to rectify the inaccurate
updates transmitted before. Besides, at the start of each round, the
FL server needs to—together with the latest parameters—also of-
fload the expected deadline (𝑇𝑅 in Eq. 3) to each client. The other
procedures are identical with standard FedAvg.
Hardware setup. We build an EC2 cluster with 128 c6i.large
instances and one c5a.8xlarge instance. Each c6i.large instance
has 2 vCPUs and 4GB RAM (similar to a smart phone), working
as a FL client. Following the average network condition of Fed-
Scale [14]—a comprehensive FL benchmark including real-world
mobile device measurements, we set the link bandwidth of each
client to 13.7 Mbps (with the wondershaper [2] tool). Meanwhile,
the c5a.8xlarge instance—which has 32 vCPUs, 64GB RAM and
10 Gbps link bandwidth—works as the FL server.

We further emulate the heterogeneity and dynamicity properties
of FL. To emulate heterogeneity, we randomly map each client to a
device in the FedScale trace [14], and have the ratio between any
two clients’ average speeds resemble that of their FedScale coun-
terparts. To emulate dynamicity, we let each client keep toggling
between fast and slow modes; the duration (in seconds) of each
fast and slow period is respectively determined by sampling from
two gamma distributions—Γ(2, 40) and Γ(2, 6). We choose gamma
distribution because the device availability duration disclosed in
FedScale trace exhibits a similar distribution shape. In the slow
mode, the slowdown ratio is randomly sampled from a uniform
distribution U(1, 5). To realize the target speed for each client, we
inject a sleeping period with proper length after each local iteration.
Workload setup. Models trained in our experiments are LeNet-
5 [16], LSTM and WideResNet28-10 [37], and their datasets are
CIFAR-10 [13], KWS [32] and CIFAR-100 [13], respectively. The
data distribution also follows a Dirichlet distribution identical with
that in Sec. 3.2.2. We use the SGD optimizer for all models; the
learning rates are set to 0.01, 0.05 and 0.1, and the weight decays
are set to 0.01, 0.01, 0.0005, respectively. Besides, the batch size is 50
and the number of local iterations in a round is 125. In each round,
the FL server waits for 90% of the updates returned the earliest. We
train each model towards a near-optimal accuracy (0.55 for CNN,
0.85 for LSTM, and 0.55 for WRN).
Algorithm setup. We compare our FedCA scheme with three
baselines: FedAvg [22], FedProx [19] and FedAda [39]. FedProx in-
troduces an additional regularization term in the loss function, and
the weight of the regularization item (𝜇) is set to the recommended

Table 1: Time to reach the target accuracy.The accuracy target
for each model is listed below the model name.

Model Scheme Per-round Time (s) # of Rounds Total Time (h)

CNN
(0.55)

FedAvg 16.7 385 1.79
FedProx 16.7 407 1.89
FedAda 6.86 453 0.86
FedCA 5.34 481 0.71

LSTM
(0.85)

FedAvg 33.2 177 1.63
FedProx 33.2 139 1.28
FedAda 13.1 207 0.75
FedCA 9.76 228 0.61

WRN
(0.55)

FedAvg 15833 65 285.9
FedProx 15837 67 294.7
FedAda 11138 74 228.9
FedCA 4507 100 125.2

value 0.01. FedAda proposes a server-determined workload tuning
method assuming homogeneous statistical contribution for each
iteration, and the trade-off factor between computation cost and
statistical benefit is set to the recommended value 0.5. For FedCA,
we set the profiling frequency (Sec. 4.1) to once after every 10
rounds, and set the marginal cost ratio (𝛽 in Eq. 3) to 0.01; we also
set the triggering thresholds of eager-transmission (𝑇𝑒 in Eq. 5) and
retransmission (𝑇𝑟 in Eq. 6) respectively to 0.95 and 0.6.

5.2 End-to-End Performance
In Fig. 7, we show the time-to-accuracy curves when training the
three models above. In each case, FedCA can always make the most
rapid accuracy enhancement. Particularly, for WRN which is the
largest one among the three models (the parameter quantities of
CNN, LSTM and WRN are respectively 60K, 50K and 36M), the
performance benefit of FedCA is the most significant.

In Table 1 we further showcase the total time to reach a near-
optimal accuracy target, accompanied with the number of rounds
and the average per-round time of the three models. For each case,
we can see that FedCA can substantially reduce the per-round time
with intra-round computation and communication optimizations,
and—-although mildly inflating the number of rounds taken—still
reduce the overall convergence time by over 15%. In particular, for
the WRN model, FedCA can attain an efficiency enhancement of
45.3% compared to the second best method (FedAda).
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Figure 8: The CDF of the iteration number at which early-
stop or eager-transmission is triggered for CNN.

5.3 FedCA Behavior Deep Dive
We further take a closer look at the behaviors of FedCA at runtime.
In Fig. 8, we show—for the CNN model—the cumulative distribu-
tion function (CDF) of the iteration number at which early-stop or
eager-transmission is triggered. In Fig. 8a, we first show the CDFs
depicting the early-stop moments respectively under FedCA and
FedAda. It reveals that some clients stop their local computation as
early as at iteration 70 (totally 125 rounds), and the action moments
for FedCA are in general earlier than that of FedAda (a natural
effect of diminishing marginal benefit as elaborated in Sec. 3.2.2).
Regarding communication optimization, in Fig. 8b, we show the
CDFs of the eager-transmission moments for all the layers with and
without retransmission (for a layer that is retransmitted, we record
its action moment as at the last iteration). From Fig. 8b, we can learn
that many layers converge early at around iteration 50; meanwhile,
while retransmission postpones the effective eager-transmission
moments in general, the overall speedup is still very salient.
5.4 Ablation Studies
In Fig. 9, we conduct ablation studies on different solution modules
of FedCA. We respectively train CNN and LSTM with different
versions of FedCA: FedCA-v1—with only the early-stop mecha-
nism, FedCA-v2—with both early-stop and eager-transmission but
without retransmission, and FedCA-v3—the standard version with
all the functionalities enabled. As shown in Fig. 9, compared with
FedAvg, the performance of FedCA-v1 itself is already good enough,
demonstrating the effectiveness of early-stopping in tackling re-
source fluctuation. Meanwhile, regarding eager transmission, we
note that its benefit is more salient in the later stage—given an ac-
curacy target of 0.54 (CNN) and 0.86 (LSTM), FedCA-v3 can attain a
speedup of 18.8% and 45.5% compared with FedCA-v1. Specifically,
given that the curve of FedCA-v2 exhibits a remarkable accuracy
loss compared with FedCA-v3, we confirm that the retransmission
mechanism is indispensable for eager-transmission.

5.5 Sensitivity Analysis and Overheads
We have introduced several hyper-parameters in FedCA—for the
early-stop part, we scale down the time cost before the deadline with
a factor 𝛽 (set to 0.01); for the eager-transmission part, we adopt
the early-convergence threshold (𝑇𝑒 ) and retransmission threshold
(𝑇𝑟 ). Here we change those hyperparameters and train CNN for 200
rounds under each setup. In Fig. 10a, the FedCA performance with
𝛽 = 0.001 is similar with the default case, whereas setting 𝛽 = 0.1—
which would excessively discourage pre-deadline computations—
does incur a slowdown. In Fig. 10b, the most rigid combination
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Figure 9: Ablation study with FedAvg, FedCA-v1 (with early-
stop), FedCA-v2 (with early-stop & eager-transmission but
without retransmission) and FedCA-v3 (standard FedCA).
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Figure 10: Sensitivity analysis of the marginal cost ratio (𝛽)
and the eager-transmission thresholds (𝑇𝑒 and 𝑇𝑟 ) for CNN.

(𝑇𝑒 = 0.95 and 𝑇𝑟 = 0.8) is slightly better than the others, yet in
general, the FedCA performance is stable across different setups.

We have also measured the memory overhead of FedCA. The
number of sampled parameters when profiling CNN, LSTM, and
WRN are 618, 905 and 9974—with the additional memory cost be
0.24MB, 0.34MB, and 3.8MB, respectively. Such overheads are neg-
ligible compared to the sizes of the original models (for example,
WRN has a model size of 139.4MB).

6 OTHER RELATED WORKS AND DISCUSSION
In this section, we list some other related works (additional to
Sec. 2.2) and discuss the future work.
Improving training efficiency. To tackle the straggler problem,
apart from client selection [3, 15], partial aggregation [22, 28] and
workload adjustment [18, 39] (elaborated in Sec. 2.2), some other
works [9, 10, 23] propose to enforce asynchronous training, in
which each client can proceed independently without waiting for
others. Yet, asynchronous updating may incur stale parameters
and compromise the training accuracy. Meanwhile, regarding im-
proving the communication efficiency, aside from the methods
elaborated in Sec. 2.2 (quantization [4, 12], sparsification [5, 8, 21]
and frequency tuning [6, 17, 30]), Liu et al. [20, 31] proposed a hier-
archical structure to mitigate the network contention at the server
side, and some others [7, 27] proposed to prioritize the gradient
transmission of different layers by their order to be consumed in
the future. These methods are orthogonal to FedCA.
Improving FL accuracy. While we focus on improving FL effi-
ciency, given salient data heterogeneity, it is also a hot topic to
improve the accuracy performance of FL. In that regard, client se-
lection methods like [3, 15] also consider the data quality as part
of the selection criterion. Meanwhile, some works seek to reduce
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the level of data heterogeneity by maintaining a few common data
samples to each client [29, 40]; some other works propose to rec-
tify the optimization process by adding an extra regulation item to
the loss function [19] or revising the vanilla gradient based on the
global update direction [11].
Discussions on future work. The concept of client autonomy
can be extended to other optimization measures. For example, the
recent years have witnessed the revival of optimizing traditional
hyper-parameters—like learning rate [25], momentum [34] and
batch size [26]—for better FL efficiency; clients may also need to au-
tonomously adjust these hyper-parameters within a training round.
We plan to explore such directions in the future.

7 CONCLUSION
In this work, to improve FL efficiency, we propose FedCA, a novel
mechanism that grants clients the autonomy to conduct intra-round
training optimizations. We first propose the periodical sampling
method to acquire the statistical progress curves efficiently at run-
time, and then devise a utility function to help reduce the workloads
on potential stragglers with minimum statistical degradation. Fi-
nally, for communication acceleration, clients under FedCA can
eagerly transmit the early-converged layers to enable computation-
communication overlap, with a retransmission mechanism to en-
sure convergence validity. Extensive experiments show that FedCA
can enhance FL efficiency by over 15%.
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[12] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
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