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Abstract—Federated learning allows edge devices to collabo-
ratively train a global model without sharing their local private
data. Yet, with limited network bandwidth at the edge, commu-
nication often becomes a severe bottleneck. In this article, we
find that it is unnecessary to always synchronize the full model
in the entire training process, because many parameters already
become mature (i.e., stable) prior to model convergence, and
can thus be excluded from later synchronizations. This allows
us to reduce the communication overhead without compromising
the model accuracy. However, challenges are that the local pa-
rameters excluded from global synchronization may diverge on
different clients, and meanwhile some parameters may stabilize
only temporally. To address these challenges, we propose a novel
scheme called Adaptive Parameter Freezing (APF), which fixes
(freezes) the non-synchronized stable parameters in intermittent
periods. Specifically, the freezing periods are tentatively adjusted
in an additively-increase and multiplicatively-decrease manner—
depending on whether the previously-frozen parameters remain
stable in subsequent iterations. We also extend APF into APF#
and APF++, which freeze parameters in a more aggressive manner
to achieve larger performance benefit for large complex models.
We implemented APF and its variants as Python modules with
PyTorch, and extensive experiments show that APF can reduce
data transfer amount by over 60%.

Index Terms—Distributed computing, federated learning,
machine learning algorithms.
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I. INTRODUCTION

F EDERATED learning (FL) [32], [40] emerges as a promis-
ing paradigm that allows edge clients (e.g., mobile and IoT

devices) to collaboratively train a model without sharing their
local private data. In FL, there is a central server maintaining the
global model, and edge devices synchronize their model updates
in communication rounds. However, the Internet connections
have limited bandwidth [1], which makes the parameter syn-
chronization between the edge and server an inherent bottleneck
that severely prolongs the training process.

A rich body of research works have been proposed to reduce
the communication amount for distributed model training. For
example, some works propose to quantize the model updates
into fewer bits [5], [32], [49], and some other works propose to
sparsify local updates by filtering out certain values [20], [27],
[53], [55]. Nonetheless, those works assume that all the model
parameters should be synchronized indiscriminately in all the
communication rounds, which we find, however, is unneces-
sary. In our testbed measurements, many parameters become
“mature” (i.e., stable) long before the model convergence; after
these parameters reach their optimal values, their subsequent
updates are random oscillations with no substantial changes,
and can be excluded without harming the model accuracy.

Therefore, an intuitive question we want to explore is, can we
reduce FL communication amount by no longer synchronizing
those stabilized parameters? We first propose a metric called
effective perturbation to identify the stabilized parameters—by
quantifying how closely the consecutive updates of a parameter
follow an oscillating pattern. A key challenge, then, is to treat the
non-synchronized parameters properly—with preserved model
convergence validity.

Delving into that regard, we empirically find that some
strawman solutions however do not work well. A straightfor-
ward method—having the stabilized parameters updated only
locally—fails to guarantee convergence, because the local up-
dates on different clients may diverge, causing model inconsis-
tency. Another method that permanently fixes (i.e., freezes) the
stabilized parameters can ensure model consistency, but it still
hurts the model convergence accuracy. This is because some
parameters may stabilize only temporally during the training
process; after being frozen prematurely, they are unable to reach
the true optima.
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Based on the above explorations, we design a novel mech-
anism, Adaptive Parameter Freezing (APF), with the objec-
tive of reducing communication volume while guaranteeing
convergence validity. The key design philosophy is to tenta-
tively freeze the stabilized parameters as guided by a feed-
back control loop. Under APF, each stable parameter is frozen
for a certain period and then unfrozen for regular updating.
The length of such freezing period is not fixed but adjusted
adaptively—additively increased or multiplicatively decreased
based on whether that parameter is still stable after being
updating regularly. This way, APF enables temporarily-stable
parameters to resume training in a timely manner, while keep-
ing the converged parameters unsynchronized for most of
the time. Our theoretical analysis further confirms that APF
can guarantee convergence validity for general non-convex
models.

Furthermore, for large models that are over-parameterized
[43], [65], we have empirically observed that some parame-
ters may not be stable even after model convergence (due to
irregular landscapes). This may largely limit the communica-
tion compression benefit of APF. Considering the statistical
redundancy of those complex neural network models, we fur-
ther propose two APF extensions, APF# and APF++, which
can freeze parameters in a more aggressive manner. The for-
mer (APF#) forces unstable parameters to be frozen for one
round with a fixed probability (similar to Dropout [24], [33],
[52]), and the latter (APF++) lets that freezing probability
and length gradually increase during training, so as to ex-
ploit statistical redundancy for more communication-reduction
benefits.

We have implemented APF (including the extensions) as
a pluggable Python module named APF_Manager, atop the
PyTorch framework. The module takes over the vanilla up-
dates of edge clients and communicates only the non-frozen
components with the server. Meanwhile, it also maintains the
freezing period of each parameter based on the metric of ef-
fective perturbation. Our evaluation on Amazon EC2 platform
demonstrates that, APF can reduce the overall transmission
volume by over 60%—with comparable or even-better general-
ization performance than vanilla FL. Meanwhile, it outperforms
a series of competing communication compression methods in
the literature, with good hyper-parameter robustness and low
overheads.

Our contributions can be summarized as follows:
� To our knowledge, we are the first that discover the oppor-

tunity to reduce the communication volume of FL by not
synchronizing the stabilized parameters.

� After exploring candidate solutions, we propose APF,
which attains large communication compression with con-
vergence validity preserved, as supported by both empirical
observations and theoretical analysis.

� We further propose APF# and APF++ that can attain even
larger communication compression benefit with more ag-
gressive parameter freezing methods.

� We have implemented APF in PyTorch, and verified its
effectiveness with extensive testbed experiments.

II. BACKGROUND

A. Federated Learning: The Basics

Deep learning techniques based on neural network models
have tremendously improved the state-of-the-art performance of
many modern applications, including image classification [23],
[33] and language processing [15], [18]. However, in many real-
world scenarios, the training samples are privacy-sensitive and
dispersed on distributed edge clients, like cellphones and IoT
equipments. To train models without centralizing such private
data, an increasingly popular technique is federated learning
(FL) [8], [32], [40]. In FL, there is a central server that maintains
the global model, and clients periodically communicate with
the server to pull the latest model parameters and, after local
refinements for multiple iterations, push back the updates for
global aggregation.

However, communication between clients and the FL server
has become a severe performance bottleneck [7], [32], [40]. As
an enabling technique that supports apps like Google Gboard
with global user [63], FL entails that edge clients need to
communicate with the server through the Internet, where the
average bandwidth is less than 10Mbps globally [1]. In our
testbed measurements (see Section VII-A for detailed setup),
when training LeNet-5 (a classical convolutional neural network
for image classification [34]) or ResNet-18 under a FL setup with
50 clients, we find that over half of the training time is spent on
parameter communication. Therefore, it is of great significance
to reduce the communication volume in FL.

B. Prior Arts and Their Limitations

To reduce the total transmission volume in distributed ma-
chine learning, there have been a bewildering array of research
works [5], [12], [16], [20], [22], [25], [27], [29], [32], [46], [49],
[50], [53], [67]. Among them the two most typical methodolo-
gies are quantization and sparsification.

Quantization [5], [49], [59] works by using lower bits to
represent the transmitted gradients which are originally repre-
sented by 32 bits. For example, Seide et al. [49] proposed to
aggressively quantize the gradients into only 1 bit, and achieved
a 10× communication speedup. A later work, QSGD [5], sought
to balance the trade-off between accuracy and gradient com-
pressing ratio, and provided a family of quantization schemes.
Wen et al. [59] developed another communication compression
scheme named TernGrad, which quantizes gradients into three
levels {-1, 0, 1}.

Sparsification aims to reduce the number of elements to trans-
mit in each iteration—by selecting only a “significant” portion of
the original content. Compared with quantization, sparsification
has the potential to achieve a much higher compression level.
In designing sparsification solutions, a key challenge is how
to identify the significant gradient components. For example,
Storm [53] and Gaia [27] proposed to only send gradients whose
absolute or relative values were larger than a given threshold.
Dryden et al. [20] chose to separately select a fraction of positive
and negative gradients for transmission—with the objective to
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meet a given compression ratio while preserving the expected
gradient values. Additionally, CMFL [55] sought to report a
portion of the initial gradients that were consistent enough with
the global one in the positive/negative directions. Those methods
have proven effective in reducing the communication amount.

Limitation of Existing Practice. However, the above spar-
sification methods are still far from optimal, because there
exists a remarkable deficiency in their criteria to identify the
so-called “significant” gradients. In those works, the significant
gradients are identified purely with instantaneous information
(e.g., by comparing the values or directions of different gradients
within each individual round), but are blind to high-level model
convergence status. In fact, users primarily care about model
convergence rather than the exact parameter values; sometimes
(as shown later in Section III) the updates of certain parameters
are not needed by the long-term model convergence—regardless
of their gradient magnitude. In that case, we can try eliminate
their gradient synchronization to further reduce overall commu-
nication volume, even though their gradients are “significant”
according to traditional criteria (e.g., in aspects of quantity or
consistency). Obviously, existing sparsification methods cannot
leverage such opportunity for better performance.

In this work, we ask a bold question: Is it necessary to keep
updating all the parameters during the entire model training
process? Intuitively, if there exist some parameters that no
longer require being updated, we can fundamentally eliminate
the communication cost of synchronizing them later. Next, we
will explore the feasibility of that idea with both theoretical
analysis and testbed measurements.

III. MOTIVATING EXPLORATION

In this section, we focus on parameter evolutions in model
training, identifying an intriguing parameter stabilizing pattern
which can be exploited for communication reduction. We first
confirm its existence with theoretical analysis and empirical
observations, and then conduct a series of in-depth study on
its microscopic characteristics.

A. Parameter Evolution During Training

Given a neural network model, the objective of model training
is to find the optimal parameters x� that can minimize the global
loss function, F (x). A common algorithm to find x� is stochas-
tic gradient descent (SGD) [34], which works in an iterative
manner. In iteration k, the model parameter xk is updated with a
gradient gξk(x) calculated from a random sample batch ξk, i.e.,
xk+1 = xk − ηgξk(xk).

In this work, we are curious on how the sequence of
{x1,x2, . . . ,xk, . . .} evolves during the model training process.
Our analysis is based on two common assumptions: strong
convexity and bounded gradients.

Assumption 1. (Strong Convexity.) The global loss function
F (x) is μ-strongly convex, i.e.,

F (y) ≥ F (x) +∇F (x)T (y − x) +
μ

2
‖y − x‖2.

An equivalent form of μ−strongly convexity is

(∇F (x)−∇F (y))T (x− y) ≥ μ‖x− y‖2.
Assumption 2. (Bounded Gradient.) The stochastic gradient

calculated from a mini-batch ξ is bounded as E‖gξ(x)‖2 ≤ σ2.
Based on the above assumptions, we can derive the following

theorem1:
Theorem 1. Suppose F (x) is μ-strongly convex, σ2 is the

upper bound of the variance of ‖∇F (x)‖2, then there exist two
constants A = 1− 2μη and B = ησ2

2μ , such that

E(‖xk − x�‖2) ≤ Ak‖x0 − x�‖2 +B.

Proof.

‖xk+1 − x�‖2 = ‖xk − x� + xk+1 − xk‖2

= ‖xk − x� − ηgξk(xk)‖2

= ‖xk−x�‖2−2η〈xk−x�,gξk(xk)〉+η2‖gξk(xk)‖2.
Taking expectation conditioned on xk we can obtain:

Exk
(‖xk+1 −x�‖2) = ‖xk − x�‖2 − 2η〈xk−x�,∇F (xk)〉

+ η2Exk
(‖gξk(xk)‖2).

Given that F (x) is μ−strongly convex, we have

〈∇F (xk),xk − x�〉 = 〈∇F (xk)−∇F (x�),xk − x�〉
≥ μ‖xk − x�‖2.

Applying total expectation, we can obtain

E(‖xk+1−x�‖2)=E‖xk − x�‖2 − 2η〈E(xk − x�),∇F (xk)〉
+ η2E(‖gξk(xk)‖2)
≤ (1− 2μη)E‖xk − x�‖2 + η2σ2.

Recursively applying the above and summing up the resulting
geometric series gives

E(‖xk−x�‖2)≤(1−2μη)k‖x0 − x�‖2+
k−1∑

j=0

(1− 2μη)jη2σ2

≤ (1− 2μη)k‖x0 − x�‖2 + ησ2

2μ
.

This completes the proof.
As implied by Theorem 1, the training gap is determined by

two components: a exponentially-decaying “bias” term related
to parameter initialization, and a stable “noise” term related
to the gradient variance bound which gradually dominates as
training proceeds. This is consistent with previous observations
that the model parameters first go through a transient phase
and then a stationary phase [42], [66]: In the transient phase,
x approaches x� exponentially fast in the number of iterations,
and in the stationary phase, x oscillates around x�. Therefore,
model parameters should change remarkably in the beginning

1.This is not our key contribution and similar theorems have already been
derived in existing works [11], [41]. We put it here primarily for clarity; besides,
our theorem form is more neat than existing ones.
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Fig. 1. Evolution of two randomly selected parameters during LeNet-5 train-
ing (with the test accuracy for reference.)

and then gradually stabilize. We further confirm that with testbed
measurements.

Empirical Observations. We train LeNet-5 [34] locally on the
CIFAR-10 dataset with a batch size of 100, and Fig. 1 shows
the values of two randomly sampled scalar parameters after
each epoch, along with the test accuracy2 for reference. In the
figure, the two parameters change significantly in the beginning,
accompanied by a rapid rise in the test accuracy; then, as the
accuracy curve plateaus, they gradually stabilize after around
200 and 300 epochs, respectively.

We note that those stabilized parameters provision a promis-
ing opportunity to mitigate FL communication bottleneck. In
current FL practices [32], [40], parameters are still updated
regularly even after they stabilize. Although the updates of sta-
bilized parameters are mostly oscillatory random noises, trans-
mitting them still consumes the same communication bandwidth
as before. Such a communication cost is in fact unnecessary,
because machine learning algorithms are in general resilient
against small parameter perturbations [17], [21], [27]. This can
also be confirmed by the success of recent techniques like
Dropout [?], [24], [52] and Stochastic Depth [28]. Thus, to
reduce communication cost in FL, as an intuitive method, we
can try avoid synchronizing such stabilized parameters.

Yet, how to identify the so-called stable parameters? And
how common is the resource wastage caused by transmitting
their oscillating gradient? We next quantitatively analyze the
parameter stability characteristics over the entire model training
process through testbed measurements.

B. Deep Dive Analysis on Parameter Stability

In this subsection, we propose a metric to quantify the param-
eter stability level, and dive deep into the inner

1) Identifying Stable Parameters: To see if the parameter
variation pattern in Fig. 1 generally holds for other parameters,
we conduct a statistical analysis of all the LeNet-5 parameters
over the entire training process.

Regarding gradient statistics, several metrics have already
been proposed in the literature to help setup certain training
hyper-parameters. For example, to instruct the batch size setup,

2.For clarity, we present the best-ever accuracy instead of instantaneous
accuracy (which fluctuates drastically) in this article.

Fig. 2. Variation of the average effective perturbation of all the parameters
during the LeNet-5 training process.

Qiao et. al [47] and McCandlish et. al [39] proposed a metric
called Gradient Noise Scale (GNS), which calculates the consis-
tent level among gradients of different samples. Meanwhile, to
instruct the learning rate setup, Johnson et. al [30] proposed to
calculate the Gradient Variance (GR) metric, and Kazuki et. al
further resorted to a second-order metric [44]. Nonetheless,
those metrics do not meet our demand in this article: We care
not about the gradient variance or gradient noise scale, but on
the parameter stability level, i.e., to what extent the gradients
from different iterations oscillate around zero. To that end, we
devise a new gradient metric called effective perturbation.

Effective perturbation is defined over an observation window
containing a certain amount of consecutive model updates in the
recent past. Formally, let uk =xk−xk−1 represent parameter
update in iteration3k, and S be the number of recent iterations
the observation window contains, thenPk—the effective pertur-
bation at iteration k—can be defined as:

Pk =
‖∑k

i=k−S+1 ui‖
∑k

i=k−S+1 ‖ui‖
. (1)

Clearly, Pk represents how a parameter’s trajectory follows
the zigzagging pattern, i.e., how the consecutive updates coun-
teract with each other. The more stable a parameter is, the
more conflicting its consecutive updates are, and the smaller
its effective perturbation is. If all the model updates are of the
same direction, Pk would be 1; if any two consecutive model
updates well counteract each other, then Pk would be 0. Thus,
with a small threshold on effective perturbation, we can identify
those stabilized parameters effectively.

We then look at the average effective perturbation of all the
parameters during the LeNet-5 training process, as depicted in
Fig. 2, where the observation window W spans one epoch (i.e.,
500 updates). We observe that the average effective perturbation
decays rapidly at first and then quite slowly after the model
converges at around epoch-200 (see the accuracy result in Fig. 1),
suggesting that most parameters gradually stabilize before the
model converges.

3.While an update here corresponds to one iteration for SGD analysis, for
FL setups it is naturally extended to be an accumulated update over an entire
round. A parameter judged stable at per-iteration granularity would remain so
at per-round granularity. For simplicity, in later parts we skip the intra-round
microscopic details, and treat each FL round as a SGD iteration when analyzing
parameter trajectories.
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Fig. 3. Average epoch number where parameters in different layers become
stable (error bars show the 5th/95th percentiles).

2) Manipulating Granularity: Tensor or Scalar?: It is well-
known that a neural network model is a list of tensors (e.g.,
weight tensor, bias tensor), where each tensor corresponds to
a multi-dimensional array of scalars. When compressing com-
munication by skipping synchronizing the stable parameters, we
have two choices regarding the parameter manipulation granu-
larity: tensor-granularity and scalar-granularity. The former is
more concise by synchronizing scalars of a tensor in an all-or-
nothing manner, yet it assumes that all the scalars in a tensor
follow the same stability pattern. To find out the appropriate
manipulating granularity, we resort to testbed measurements
that compare the stability behaviors of different parameters in a
model.

As in Fig. 3, we group all scalars into different buckets
according to the tensor they belong to, and calculate the average
epoch number at which the scalars in that tensor bucket become
stable. In LeNet-5 there are 10 tensors, e.g., conv1-w—the
weight tensor in the first convolutional layer, and fc2-b—the
bias tensor in the second fully connected layer. Here a scalar is
deemed stable when its effective perturbation drops below 0.01,
and the error bars in Fig. 3 represent the 5th and 95th percentiles.

As indicated by Fig. 3, different tensors exhibit different sta-
bility trends; meanwhile, there also exist large gaps between the
5th and 95th error bars of each tensor, implying that parameters
within the same layer may exhibit vastly different stabilization
characteristics. This is in fact reasonable, because some features
of the input samples may be easier to learn than the rest, and thus
in a neural network layer, some scalar parameters move faster in
their optimal dimensions and would converge faster [66]. This
is essentially a property called non-uniform convergence [27].

Therefore, the granularity for parameter synchronization con-
trol needs to be individual scalar instead of the entire tensor.
That is, let xj

k and uj
k respectively represent the j-th scalar in

the flattened parameter4xk and flattened update uk, then given
a stability threshold γ, a scalar xj

k would judged as stable if

Pj
k =
|∑k

i=k−S+1 u
j
i |∑k

i=k−S+1 |uj
i |

< γ. (2)

4.For simplicity, in the remaining part of this article, we use a vector symbolx
to represent all the parameters in a model. In implementation, that vector can be
obtained by first expanding all the model tensors into a vector (with the PyTorch
API Tensor.view(-1)) and then concatenating those vectors together.

Note that our objective in this work is to reduce the communi-
cation volume for FL without compromising the accuracy per-
formance. In the next section (Section IV), we will explore how
to treat those stabilized parameter so as to harvest communica-
tion compression with accuracy preserved, whose applicability
is further extended in Section V. Later in Section VI, we will
discuss how to integrate that solution into realistic FL systems in
an efficient manner, and finally we will evaluate its performance
in Section VII.

IV. ADAPTIVE PARAMETER FREEZING

In this section, we present a novel mechanism called Adaptive
Parameter Freezing (APF), which can reduce the communica-
tion cost in FL process with the model convergence validity
preserved. We first explore some strawman solutions, with the
lessons learned we then develop our APF solution.

A. Lessons Learned From Strawman Solutions

Given the stabilized parameters identified with the effective
perturbation metric, how to exploit them so that we can reap
communication reduction without compromising model con-
vergence? We find that some intuitive approaches however do
exhibit some fatal deficiencies, from which we can learn the key
principles that a valid solution must follow.

Intuitive Solution 1—Partial Synchronization. To exploit the
stabilized parameters for communication compression, an in-
tuitive idea is to exclude them from synchronization (but still
update them locally), and only synchronize the rest of the model
to the central server. We find that such a partial synchronization
method may cause severe accuracy loss.

In typical FL scenarios, the local training data on an edge
client is generated under particular device environment or
user preference. Thus the local data is usually not identically
and independently distributed (i.e., non-IID) across different
clients [7], [32], [40]. This implies that the local loss function
F (x) and the corresponding local optima x� on clients are
usually different [68]. Therefore, a parameter that is updated
only locally would eventually diverge to different local optima
on different clients; such inconsistency of unsynchronized pa-
rameters would deteriorate the model accuracy.

To confirm this, we train the LeNet-5 model in a distributed
manner with non-IID data. There are two clients each with
5 distinct classes of the CIFAR-10 dataset, and stabilized pa-
rameters are excluded from later synchronization. Fig. 4 shows
the local variation of two randomly selected parameters: Once
they are excluded from global synchronization, their values on
different clients would diverge remarkably. The model accuracy
under such a partial synchronization method is further revealed
in Fig. 5: Compared to full-model synchronization, there is an
accuracy loss of more than 10%. Therefore, the first principle
our design must follow is that, stabilized (i.e., unsynchronized)
parameters must be kept unchanged on each client (Principle-1).

Intuitive Solution 2—Permanent Freezing. Given Principle-1,
another intuitive method is to simply fix the stabilized parame-
ters to their current values. Such a permanent freezing method
can naturally prevent parameter divergence. However, when
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Fig. 4. When training LeNet-5 under a non-IID setup with two clients, the local
values of two randomly selected parameters (stabilizing at around round-300 and
then updated purely locally) would diverge on different clients.

Fig. 5. Partial synchronization causes severe accuracy loss on non-IID data.

Fig. 6. Permanent freezing also causes accuracy loss.

training LeNet-5 with permanent freezing with two clients, we
find that the accuracy performance as depicted in Fig. 6 is still
suboptimal compared to full-model synchronization.

To understand the reasons behind we look into the parameter
evolution process during training. Interestingly, we find that
some parameters stabilize only temporarily. Fig. 7 showcases
two such parameters: they start to change again after a transient
stable period. In fact, parameters in neural network models
are not independent of each other. They may have complex
interactions with one another in different phases of training [52],
and this may cause a seemingly-stabilized parameter to drift
away from its current value (to ultimate optimum). The perma-
nent freezing solution, however, prevents such parameters from
converging to the true optimum once they are frozen, which
eventually compromises the model accuracy. It is inherently

Fig. 7. The two sampled parameters stabilize only temporarily between epoch
100 and 200.

difficult to distinguish the temporarily stabilized parameters by
devising a better stability metric based on local observations,
since their behavior before drifting is virtually identical to
that of those that truly converge. Hence, as another principle
(Principle-2), any effective solution must handle the possibility
of temporary stabilization.

B. Adaptive Parameter Freezing

Parameter Freezing in a Periodical Manner. To summa-
rize, we learned two lessons from the previous explorations.
First, to ensure model consistency, we have to freeze the non-
synchronized stable parameters. Second, to ensure that the
frozen parameters can converge to the true optima, we shall
allow them to resume being updated (i.e., be unfrozen) when
necessary.

Therefore, for those stabilized parameters, instead of freezing
them forever, we freeze them only for a certain time interval,
which we call freezing period. Within the freezing period, the
parameter is fixed to its previous value, and once the freezing
period expires, that parameter should be updated as normal until
it stabilizes again. That is, suppose the parameter xj

k is judged
as being stable (i.e., Pj

k < γ), then it would be associated with
a freezing period of Lj

k, such that xj
t+1 = xj

t for t ∈ {k, k +

1, . . . , k + Lj
k − 1}.

A remaining question is, given that there is no complete
knowledge of the model convergence process a priori, when to
unfreeze a frozen parameter? Or how to set the freezing period
once a parameter becomes stable? We next propose a novel
mechanism to control the parameter freezing period.

Control Mechanism of Parameter Freezing Period. Since each
parameter has a distinct convergence behavior, our solution must
adapt to each individual parameter instead of using an identical
freezing period for all. There is a clear trade-off here: If the
freezing period is set too large, we can compress communication
significantly, but some should-be-drifting parameters cannot
escape frozen state timely, which may compromise the model
convergence accuracy; on the other hand, if the freezing period
is set too small, performance benefit from parameter freezing
would be quite limited.

Therefore, we need to adaptively set the freezing period of
each stabilized parameter. For generality we do not assume any
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Fig. 8. A flowchart showing the control mechanism of parameter freeing
period in APF. If a frozen parameter-j keeps stable (i.e., P j

k
< γ) after its

freezing period expires, its freezing period Lj is increased linearly (e.g., added
by 1); otherwise if that parameter is no longer stable, its freezing period is
decreased multiplicatively (e.g., being halved).

prior knowledge of the model trained, and choose to adjust
parameter freezing period in a tentative manner. In particular,
we shall greedily increase the freezing period as long as the
frozen parameter keeps stable after being unfrozen, and shall
meanwhile react agilely to potential parameter variation.

To this end, we design a novel control mechanism called
Adaptive Parameter Freezing (APF). APF is inspired by the
classical control mechanism of TCP (Transmission Control Pro-
tocol) in computer networking [6], [10]: It additively increases
the sending rate of a flow upon the receipt of a data packet
in order to better utilize the bandwidth, and multiplicatively
decreases the sending rate when a loss event is detected, to
quickly react to congestion. This simple control policy has been
working extremely robustly as one of the cornerstones of the
Internet.

Similarly, as shown in Fig. 8, under APF the associated
freezing period of each stabilized parameter is also adjusted
in an “additively-increase, multiplicative decrease” manner. For
a stable parameter, its freezing period starts with a small value
(e.g., one round as in our evaluation). When the freezing period
expires, the parameter resumes regular training in the following
round, after which we update its effective perturbation and
re-check its stability. If the parameter is still stable, we addi-
tively increase—and otherwise multiplicatively decrease (e.g.,
halve)—the duration of its freezing period, thereby adapting
to the dynamics of each parameter. This way, the converged
parameters would stay frozen for most of the time, whereas the
temporally stabilized ones can swiftly resume regular synchro-
nization.

To integrate the above algorithm into realistic FL systems,
we create a dedicated Python module called APF_manager.
That APF_manager makes our communication optimization

transparent to clients: It compresses (uncompresses) vanilla
gradients before (after) synchronization based on the parameter
freezing status, and also automatically maintains the parameter
freezing periods based on the algorithm in Fig. 8. We have also
adopted a series of engineering optimizations to reduce the extra
overhead of APF, and the elaboration of such implementation
details is deferred to Section VI. Next, we mathematically prove
that APF can preserve model convergence for general models.

C. Convergence Analysis

Note that our motivating analysis in Section III-A assumes the
models be convex, which is acceptable for the community [11],
[27], [41], [55]. Yet, we admit that deep neural networks are
essentially non-convex. In this part we prove that APF can ensure
convergence validity even for non-convex models. We first state
the smoothness assumption.

Assumption 3. (β-smoothness) The global loss functionF (x)
is β-smooth, i.e.,

F (y) ≤ F (x) +∇F (x)T (y − x) +
β

2
‖y − x‖2.

Inspired by the perturbed iterate framework of [38], we define
a virtual sequence {x̃k} based on the true sequence {xk} in the
following way:

x̃0 := x0, x̃k+1 := x̃k − ηt∇F (xk). (3)

Our analysis is based on the following assumption which
bounds the cumulative updates of a frozen parameter if otherwise
refined regularly without APF.

Assumption 4. (Parameter Gap incurred by Freezing.) Sup-
pose xj

k is judged as being stable (i.e., P(S)
k,j < γ) and asso-

ciated with a freezing period Lj
k under APF, then under As-

sumption 2 (let E|uj | ≤ σj be the bound of the j-th update,
where

∑
j (σ

j)2 = σ2), there exists a constant ν such that

∀l ∈ 1, 2, . . . , Lj
k,

E|
l∑

l′=0

uj
k+l′ | ≤ νγηkσ

j . (4)

Justification of Assumption 4. Admittedly, given the stochastic
nature of the model training process, there is no determinis-
tic knowledge on the virtual behavior of a frozen parameter
in a “parallel world” without freezing. To handle this chal-
lenge, given the adaptive monitoring functionality of APF, we
faithfully assume that the expected behavior of a parameter
within the freezing period resembles that within the previous
observation window, i.e., (2) also hold for the excluded updates
{uj

k,u
j
k+1, . . . ,u

j

k+Lj
k−1
}. That is,

E|
Lj

k−1∑

l′=0

uj
k+l′ | = Pj

k

Lj
k−1∑

l′=0

|uj
k+l′ | ≤ γLj

kηkσ
j . (5)

Further, in APF the freezing period Lj
k is not set arbitrarily as

an independent constant, but by adapting to the model landscape
(Lj

k is increased only when the previous stability trend persists).
Therefore, we can actually get rid of Lj

k and use a constant
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ν to bound the expected cumulative error after skipping those
updates—this then yields Assumption 4.

Based on the above two assumptions (note that the convexity
assumption is not required), we can obtain the following theo-
rem:

Theorem 2 (Convergence Property). Under the Assumption
3 and Assumption 4, after running T iterations under APF, we
have:

1
∑T

k=1 ηk

T∑

k=1

ηkE[‖∇F (xk)‖2] ≤ 4(F (x0)− F (x�))
∑T

k=1 ηk

+
4σ2β2ν2γ2

∑T
k=1 η

3
k∑T

k=1 ηk
+

2βσ2
∑T

k=1 η
2
k∑T

k=1 ηk
. (6)

Proof. Under the Assumption of β-smooth of F , we have

F (x̃k+1)−F (x̃k) ≤ ∇F (x̃k)
T (x̃k+1−x̃k)+

β

2
‖x̃k+1−x̃k‖2

= − ηk∇F (x̃k)
T gk(xk) +

η2kβ

2
‖gk(xk)‖2. (7)

Taking the expectation at iteration k, we have

E[F (x̃k+1)]− F (x̃k)

≤ −ηk∇F (x̃k)
T E[gk(xk)] +

η2kβ

2
E[‖gk(xk)‖2]

= −ηk∇F (x̃k)
T∇F (xk) +

η2kβ

2
E[‖gk(xk)‖2]

= −ηk
2
‖∇F (x̃k)‖2 − ηk

2
‖∇F (xk)‖2

+
ηk
2
‖∇F (x̃k)−∇F (xk)‖2 + η2kβ

2
E[‖gk(xk)‖2]

≤−ηk
2
‖∇F (x̃k)‖2+ ηkβ

2

2
‖x̃k−xk‖2+ η2kβ

2
E[‖gk(xk)‖2]

= −ηk
2
(‖∇F (x̃k)‖2 + β2‖xk − x̃k‖)

+ ηkβ
2‖xk − x̃k‖2 + η2kβ

2
E[‖gk(xk)‖2]

≤ −ηk
2
(‖∇F (x̃k)‖2 + β2‖xk − x̃k‖)

+ ηkβ
2‖xk − x̃k‖2 + η2kβσ

2

2
. (8)

Taking the expectation before k, it yields

E[F (x̃k+1)]− E[F (x̃k)] ≤ ηkβ
2E[‖xk − x̃k‖2]

+
η2kβσ

2

2
− ηk

2
E[(‖∇F (x̃k)‖2 + β2‖xk − x̃k‖)]. (9)

Here we first focus on the term of E‖xk − x̃k‖2. For those frozen
parameters, the gap is quantified by Assumption 4; for those non-
frozen parameters which is updated under vanilla SGD without
any APF interference, there is no gap incurred in expectation.
Therefore, let lj represent the frozen length so far of the j-th

scalar, we have

E‖xk − x̃k‖2 = E(
∑

j

|xj
k − x̃j

k|2)

=
∑

j

E|
lj∑

l′=0

uj
k+l′ |2 ≤ ν2η2kγ

2
∑

j

(σj)2 = ν2η2kγ
2σ2.

(10)

Applying the above inequality to (9), we have

E[F (x̃k+1)]− E[F (x̃k)] ≤ η2kσ
2(ηkβ

2ν2γ2 +
β

2
)

− ηk
2

E[(‖∇F (x̃k)‖+ β2‖xk − x̃k‖2)]. (11)

Then we can obtain

ηkE[(‖∇F (x̃k)‖2 + β2‖xk − x̃k‖2)]
≤ 2(E[F (x̃k)]− E[F (x̃k+1)]) + η2kσ

2(2ηkβ
2ν2γ2 + β).

(12)

Using the β-smooth property of F (x), we have

‖∇F (xk)‖2 = ‖∇F (xk)−∇F (x̃k) +∇F (x̃k)‖2

≤ 2‖∇F (xk)−∇F (x̃k)‖2 + 2‖∇F (x̃k)‖2

≤ 2β2‖xk − x̃k‖2 + 2‖∇F (x̃k)‖2. (13)

Combine with (12), we obtain

ηkE[‖∇F (xk)‖2] ≤ 2ηkE[β2‖xk − x̃k‖2 + ‖∇F (x)‖2]
≤ 4(E[F (x̃k)]− E[F (x̃k+1)]) + 2η2kσ

2(2ηkβ
2ν2γ2 + β).

(14)

Summing up the above inequality for k = 1, 2, . . . , T , we have

T∑

k=1

ηkE[‖∇F (xk)‖2] ≤ 4(F (x0)− F (x�))

+ 4σ2β2ν2γ2
T∑

k=1

η3k + 2βσ2
T∑

k=1

η2k. (15)

By dividing the summation of learning rates, we have:

1
∑T

k=1 ηk

T∑

k=1

ηkE[‖∇F (xk)‖2] ≤ 4(F (x0)− F (x�))
∑T

k=1 ηk

+
4σ2β2ν2γ2

∑T
k=1 η

3
k∑T

k=1 ηk
+

2βσ2
∑T

k=1 η
2
k∑T

k=1 ηk
.

Theorem 2 implies that model training under APF can con-
verge to 0 if T is large enough, when ηk is set to satisfy the
following condition:

lim
T→∞

T∑

k=1

ηk =∞ and lim
T→∞

∑T
k=1 η

2
k∑T

k=1 ηk
= 0. (16)

Therefore, if we set ηk = O( 1√
T
) which satisfies the condi-

tions in (16), then model convergence can be guaranteed under
APF.
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Fig. 9. For over-parameterized models, the sampled parameters may drift or
perform random walk after convergence.

Fig. 10. FL workflow with APF_Manager.

V. MORE AGGRESSIVE PARAMETER FREEZING: APF#
AND APF++

In standard APF, we focus on identifying and freezing those
stable parameters: The more parameters becoming stable, the
larger communication reduction benefit APF can yield. How-
ever, for large over-parameterized models like ResNet and
VGG [43], [65], many parameters may not converge to a fixed
point (i.e., stabilize) due to irregular landscapes like flat min-
ima [26] or saddle points [31]: They are not stable even after the
model converges, which may saliently limit the performance
benefit of APF.

We first reveal that problem with testbed measurements. In
Fig. 9, we show the variations of two randomly sampled
parameters in ResNet and VGG. Compared with the parameter
variations of smaller models (as in Figs. 1, 4 and 7), we find
that the parameters in large over-parameterized models exhibit
more salient fluctuations. Moreover, even after the model trained
reaches the highest accuracy, the sampled parameters are still
not stable; instead, they conduct random walk in fixed or ad-hoc
directions without affecting accuracy. In fact, this is a natural
result caused by irregular landscapes like flat minima and sad-
dle points [26], [31]. For such over-parameterized models, the
fraction of stable parameters that could be frozen under APF
may be quite small (as shown later in Fig. 11b of Section VII).

Therefore, for over-parameterized large models, we can try
freeze the model parameters more aggressively to harvest
larger performance benefit. To this end, we propose two APF

extensions—APF# and APF++, which randomly associate some
unstable parameters with a non-zero freezing period.

APF#. APF# is directly motivated by the famous Dropout
technique [24], [33], [52]. By randomly (typically with a proba-
bility of 0.5) disabling some neural connections in each iteration,
Dropout has been shown to saliently improve the model gen-
eralization capability. Similarly, for each unfrozen parameter
in APF#, we randomly (under a fixed probability) associate
it with a freezing period of 1. In this way, it can be expected
that the transmission amount can be further reduced with model
accuracy still preserved.

APF++. Note that to design an aggressive version of APF,
we need to answer two questions: What is the probability to
put an unstable parameter into freezing? And how long is that
freezing period? In APF# the two answers are both fixed (0.5
and 1) to resemble Dropout, yet in APF++ we let both of them
gradually increase during the training process. That is, given
the round number K, we set the probability to freeze a unstable
parameter as a1K, and the length of the freezing period is
randomly sampled from [1, 1 + a2K], where a1 and a2 are
predefined coefficients. APF++ is motivated by the fact that
the earlier training phase is usually more important for model
convergence [4], [62], implying that the freezing probability
can be larger in the end. Moreover, over-parameterized models
with irregular landscapes like flat minima may allow for
longer random freezing, with no need to limit it to merely one
round. This way, it is expected that APF++ can attain even
larger communication reduction with comparable accuracy
performance for over-parameterized models.

VI. IMPLEMENTATION

In this section we focus on implementing the APF algorithm
in a practical manner. We first customize the vanilla APF al-
gorithm to make it efficient in communication, computation
and memory, as well as to make it more roust against improper
hyper-parameter setups. Then we elaborate the implementation
details with the PyTorch framework.

A. Customizing APF for Efficiency and Robustness

For Better Communication Efficiency—Updating Parameter
Freezing Status on Clients. Identifying stabilized parameters is
the first step to eliminate unnecessary parameter synchroniza-
tion. Doing this on the central server would incur additional
communication cost of sending the results back to clients.
Therefore, we choose to perform parameter stability check on the
client side. Given the memory and computing-power limitations
of edge devices, calculating the effective perturbation defined
in (1) is resource prohibitive, as it requires each client to locally
store a series of model snapshots and process them frequently.
Therefore, we need to further mitigate the computation and
memory overhead incurred by APF.

For Better Computation Efficiency—Checking Stability Once-
for-Multiple-Rounds. To reduce the computation cost, we allow
the frequency of stability check to be relaxed from once-for-per-
round to once-for-multiple-rounds. Correspondingly, we judge
stability based on the accumulated model updates between
two consecutive checks. This is feasible because a stabilized
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Fig. 11. Test accuracy curves when training different models with and without APF.

parameter would remain so when observed at a coarser time
granularity.

For Better Memory Efficiency—Incorporating EMA Smooth-
ing in Calculating Effective Perturbation. To be memory-
efficient, instead of maintaining a window of previous updates,
we adopt the Exponential Moving Average (EMA) method to
calculate effective perturbation. For a parameter in the Kth

stability check, let Δj
K represent the cumulative update since

the last check for parameter j. Then the effective perturbation
of this parameter, Pj

K , can be defined as:

Pj
K =

|Ej
K |

Aj
K

, where Ej
K = αEj

K−1 + (1− α)Δj
K ,

Aj
K = αAj

K−1 + (1− α)|Δj
K |. (17)

Here EK is the moving average of the parameter updates, and
Aj

K is the moving average of the absolute value of parameter
updates. The smoothing factor α is set close to 1. This way,
the nice properties of effective perturbation under the previous
definition of (1)—close to 1 if model updates are of the same
direction, and close to 0 if they oscillate—still hold forPK yet at
a much lower compute and memory cost. In addition, decaying
the earlier updates with EMA is sensible because recent behavior
is more significant. Therefore, in the following, we determine a
parameter as stable if its effective perturbation under this new
definition is smaller than a given stability threshold.

For Better Robustness—Enabling Stability Threshold Decay.
Ideally, the stability threshold should be loose enough to include
all stabilized parameters (i.e., avoid false negatives), and in the
meantime be tight enough to not mistakenly include any unstable
parameters (i.e., avoid false positives). However, we cannot
assume that the stability threshold is always set appropriately.
To be robust, we introduce a mechanism that adaptively tunes
the stability threshold at runtime: Each time when most (e.g.,
80%) parameters have been categorized as stable, we decrease
the stability threshold by one half—a method similar to learning
rate decay. This way, the negative effect of improper stability
thresholds can be gradually rectified, which will be verified later
in Section VII-H.

B. Implementing APF Atop PyTorch Framework

Workflow Overview. We implement APF as a pluggable
Python module, named APF_Manager, atop the PyTorch

framework [2]. The detailed workflow with APF_Mananger
is elaborated in Fig. 10 and Algorithm 1. In each it-
eration, after updating the local model, each client calls
the APF_Manager.Sync() function to handle all the
synchronization-related issues. The APF_Manager wraps
up all the APF-related operations (stability checking, pa-
rameter freezing, model synchronization, etc.), rendering
the APF algorithm transparent and also pluggable to edge
users. Next we introduce the key techniques in our APF
implementation.

Using a Bitmap to Represent Parameter Freezing Status.
When doing global synchronization, theAPF_Manager selects
and packages all the unstable parameters into a tensor for fast
transmission. The selection is dictated by a bitmap Mis_frozen

representing whether each (scalar) parameter should be frozen
or not, which is updated in the function StabilityCheck()
based on the latest value of effective perturbation. To avoid extra
communication overhead, the APF_Manager on each client
refreshes Mis_frozen independently. Note that, since Mis_frozen

is calculated from synchronized model parameters, the val-
ues of Mis_frozen calculated on each worker would be always
identical.

Emulating the Effect of Fine-Grained Parameter Freezing.
A key implementation challenge is that, PyTorch operates pa-
rameters at the granularity of a full tensor, with no APIs sup-
porting parameter freezing at a granularity of per dimension
(scalar). This also holds in other machine learning frameworks
like TensorFlow [3] and MXNet [14]. To achieve fine-grained
parameter freezing, we choose to emulate the freezing ef-
fect by rolling back: those should-be-frozen scalar parameters
participate model update normally, but after each iteration,
their values are rolled back to their previous values (Line-2
in Algorithm 1). Meanwhile, all APF operations are imple-
mented with the built-in tensor-based APIs of PyTorch for fast
processing.

Complexity analysis. Given that edge devices are resource-
constrained, we need to be careful with the overheads incurred by
APF operations. It is easy to see that the space and computation
complexity of Algorithm 1 is linear to the model size, i.e.,
O(|x|). This is acceptable because memory consumption in
model training is mostly incurred by input data and feature
maps, compared to which the memory consumption of the model
itself is usually orders-of-magnitude smaller [48]. Meanwhile,
with Tensor-processing APIs provided by PyTorch, the tensor
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Algorithm 1: Workflow With Adaptive Parameter Freezing.
Require: Fs, Fc, Ts � Fs: synchronization frequency (i.e.,
synchronization is conducted once for Fs iterations); Fc:
stability check frequency; Ts: threshold on Pk below
which to judge a parameter as being stable

Client: i = 1, 2, . . . , N :
1: procedure ClientIteratek
2: xi

k ← xi
k−1 + ui

k� update local model xi
k on client-i

3: xi
k ←APF_Manager.Sync(xi

k) � pass model to
APF_Manager

Central Server:
1: procedure Aggregatex̆1

k, x̆2
k, . . . , x̆

N
k

2: return 1
N

∑N
i=1 x̆

i
k� aggregate all the non-frozen

parameters
APF Manager:
1: procedure Syncxi

k

2: x̄i
k ←Mis_frozen ? x

i
k−1 : xi

k � emulate freezing
by parameter rollback; Mis_frozen: freezing mask

3: if k mod Fs = 0 then
4: x̆i

k ← x̄i
k.masked_select(!Mis_frozen)

� x̆i
k: a compact tensor composed of only the

unstable parameters
5: x̆k ←Central_Server.aggregate(x̆i

k)
� synchronize the tensor containing unstable

parameters
6: x̄i

k ← x̄i
k.masked_fill(!Mis_frozen, x̆k)

� restore the full model by merging the frozen
(stable) parameters

7: if k mod Fc = 0 then
8: Mis_frozen←StabilityCheck(x̄i

k,Mis_frozen) �
update Mis_frozen

9: returnx̄i
k

10: function StabilityCheckx̄i
k,Mis_frozen

� Operations below are tensor-based, supporting
where selection semantics

11: update E, A, Pk with x̄i
k

12: Lfreezing ← Lfreezing + Fc where Pk ≤ Ts

13: Lfreezing ← Lfreezing/2 where Pk > Ts

� Lfreezing: freezing period lengths, updated in
TCP-style

14: Iunfreeze ← k + Lfreezing

� Iunfreeze: round ids representing freezing deadlines
15: Mis_frozen ← (k < Iunfreeze) � update freezing mask
16: returnMis_frozen

traversal operations of APF are much faster than the already-
existing convolution operations in forward or backward propa-
gations. Such a light-weight nature allows APF to be deployed
in resource-constraint scenarios like on IoT devices, and we will
evaluate APF overheads later in Section VII-I.

VII. EVALUATION

In this section, we systematically evaluate the performance of
our APF algorithm family. We start with end-to-end comparisons

between APF and the standard FL scheme, and then resort to a
series of micro-benchmark evaluations to justify the superiority
of APF in various scenarios, including its extended versions
(APF#, APF++ and APF with Quantization). Finally we examine
the hyper-parameter sensitivity as well as the extra overheads
incurred.

A. Experimental Setup

Hardware Setup. We create a FL architecture5 with 50 EC2
m5.xlarge instances as edge clients, each with 2 vCPU cores
and 8GB memory (similar with a smart phone). Meanwhile,
following the global Internet condition [1], the download and
upload bandwidth of each client is configured to be 9Mbps
and 3Mbps, respectively. The central server is a c5.9xlarge
instance with a bandwidth of 10Gbps.

Dataset setup. Datasets in our experiments are CIFAR-10 and
the KeyWord Spotting dataset (KWS)—a subset of the Speech
Commands dataset [58] with 10 keywords, which are partitioned
across the 50 clients. To synthesize non-IID data distribution,
we independently draw each client’s training samples following
Dirichlet distribution [64], which controls local class evenness
via a concentration parameter α (α→∞means IID data distri-
bution). In particular, we setα = 1 on each worker (under which
the expected max-min ratio among sample numbers of different
classes is over 50).

Model Setup. Models trained upon the CIFAR-10 dataset are
LeNet-5 and ResNet-18, and upon the KWS dataset is a LSTM
network with 2 recurrent layers (the hidden size is 64), all with a
batch size of 100. Meanwhile, for diversity we use the Adam [19]
optimizer for LeNet-5, and SGD optimizer for ResNet-18 and
LSTM; their learning rates are respectively set to 0.001, 0.1,
and 0.01 (default for each model-optimizer combination), with
a weight decay of 0.01.

APF setup. Moreover, the default synchronization and stabil-
ity check frequency are respectively set as 10 and 50. Regarding
the stability check of APF, the EMA parameter α is 0.99, and
the stability threshold on effective perturbation is 0.05, which
is halved once the fraction of frozen parameters reaches 80%, a
method we introduced in Section VI-A.

B. End-to-End Evaluations of Standard APF

Convergence Validity. Fig. 11 shows the test accuracy curves
for training the three models with and without APF. The syn-
chronization and stability check frequencies (Fs and Fc) are set
as 10 and 50. Here a model converges if its test accuracy has
not changed for 100 rounds, and the dashed red lines represent
the ratio of frozen parameters in each round. These results
demonstrate that APF does not compromise convergence. We
list the best-ever testing accuracy in each case in Table I. In
particular, we notice that when training LeNet-5 and LSTM,

5.In real-world FL scenarios, due to poor connection and client instability,
some clients may dynamically leave or join the FL process [40]. Yet this is
only an engineering concern and does not affect the effectiveness of our APF
algorithm, because with admission control [7], active workers in each round
always start with the latest global model (as well as Mis_frozen for APF). For
simplicity, all the clients can work persistently in our FL architecture setup.
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TABLE I
THE BEST TESTING ACCURACY FOR EACH MODEL

TABLE II
CUMULATIVE TRANSMISSION VOLUME

TABLE III
AVERAGE PER-ROUND TIME

APF actually achieves a better accuracy. This is because, like
Dropout [52], intermittent parameter freezing under APF can
break up parameter co-adaptations and avoid overfitting, which
improves the model’s generalization capability.

Communication Efficiency. We next turn to the efficiency
gain of APF. Table II summarizes the cumulative transmission
volume of each client up to convergence, showing that APF
can greatly reduce the transmission volume. For LeNet-5 for
example, it provides a saving of 63.3%. Table III further lists
the average per-round time (i.e., training time divided by the
number of rounds) in each case, showing that APF can speed up
FL by up to 27.5%. For extreme cases where the bandwidth (e.g.,
with cellular networks) is much less than the global average, it
is expected that the speedup would be even larger.

C. APF Performance on Extremely Non-IID Data

Recall that in Section IV-A we explored two strawman solu-
tions to avoid transmitting stable parameters: partial synchro-
nization (i.e., only synchronizing the unstable parameters and
having the stable ones updated locally) and permanent freezing
(i.e., no longer updating the stable parameters). Here we compare
their performance with standard FL and APF in a setup with
extremely non-IID data. In particular, we train LeNet-5 with 5
workers, and each worker is configured to host only 2 distinct
classes of CIFAR-10.

As shown in Fig. 12a, APF achieves the same accuracy as
standard FL for LeNet-5. More importantly, because parameter
freezing in APF can avoid overfitting and improve the model
generalization capability, in Fig. 12b it attains an accuracy
improvement of 18% over standard FL, which is consistent with
our previous conclusion from Fig. 11. Meanwhile, in each case,
the accuracy performance of APF is much better than both partial
synchronization and permanent freezing methods.

Fig. 12. Performance comparison among different schemes when training
LeNet-5 and LSTM on extremely non-IID data.

Fig. 13. Accuracy performance of different sparsification methods.

D. Comparison Against Other Sparsification Methods

We further compare the performance of APF with two typ-
ical sparsification methods in the literature: Gaia [27] and
CMFL [55], which have been introduced in Section II. We
implement6 Gaia and CMFL also with PyTorch, and in our
evaluation their hyper-parameters are set to the default values
as in their papers: The significance threshold in Gaia is 0.01
(meaning that updates with less-than-1% change will not be
reported) and the relevance threshold in CMFL is 0.8 (meaning
that updates with less-than-80% direction consistency will not
be reported).

Fig. 13 shows the accuracy curves when training LeNet-5
and LSTM with 5 clients each hosting two distinct sample
classes. As shown in Fig. 13, in each case APF can always make
the best model accuracy. This is because Gaia and CMFL are
blind to the long-term model training process, and updates that
are temporally insignificant (in value) or irrelevant (in update
direction) may still need to be transmitted to ensure validity.
That is, purely local sparsification decisions may not be accurate
for long-term model convergence.

Furthermore, APF can also surpass Gaia and CMFL in the
communication benefit. Fig. 14 shows the cumulative trans-
mission amount when training LeNet-5 and LSTM respectively

6.We implement Gaia and CMFL with two respective Python modules—
Gaia_Manager and CMFL_Manager. Their workflows are similar with that
ofAPF_Manager: First select the valuable parameters for transmission, second
to conduct remote synchronization, and third to restore the full model from the
synchronized portion.
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Fig. 14. Cumulative transmission amount under different sparsification meth-
ods.

under the three schemes (with both pull and push transmission
considered). For Gaia and CMFL (with decaying thresholds
as elaborated in their papers), their communication reduction
performance is stable, rendering the cumulative transmission
amount almost linear to the round number; yet, APF can achieve
larger reductions in later rounds by freezing more stable pa-
rameters. More importantly, Gaia and CMFL only compress the
parameter transmission in the push phase, yet APF eliminates the
transmission of stable parameters in both pull and push phases,
which helps to make a larger communication reduction.

E. Necessity of the TCP-Style Control Mechanism

Note that a key building block of APF is a TCP-style mech-
anism to control the parameter freezing period, i.e., additively
increase or multiplicatively decrease the freezing period of each
parameter based on whether that parameter keeps stable after
being unfrozen. Then, is it necessary or can we replace it with a
simpler mechanism? To explore that, we replace it with three dif-
ferent control mechanisms: pure-additive—increase or decrease
the freezing period always additively; pure-multiplicative—
increase or decrease the freezing period always multiplicatively;
and fixed—freeze each stabilized parameter for a fixed period
(across 10 stability checks or for 10× Fc iterations in our
experiment).

Fig. 15 shows the validating accuracy and instantaneous stable
ratio under each scheme for LeNet-5. From Fig. 15b, we find that
different control schemes exhibit a similar performance on stable
ratio– - meaning that they can reduce the overall communication
volume to a similar extent; yet on the other hand, our TCP-style
mechanism—by freezing parameters tentatively and unfreezing
them agilely once parameter shifting occurs—can avoid the
negative impact of parameter freezing, and as as shown in
Fig. 15a, thus yield the best testing accuracy.

F. Effectiveness of APF# and APF++

Recall that in Section V we propose two APF extensions,
APF# and APF++, to attain larger transmission reduction with
more aggressive parameter freezing. In this subsection we eval-
uate their effectiveness with micro-benchmark measurements in
a cluster of 10 nodes (under the SGD optimizer with Fc = Fs).

Fig. 15. A comparison of the TCP-style control scheme in APF against other
potential design choices. Pure-Additively means to additively increase or de-
crease the freezing period by 1; Pure-Multiplicatively means to multiplicatively
increase or decrease the freezing period by 2×; Fixed (10) means to freeze each
stabilized parameters for 10 (in number of stability checks, i.e., for 10× Fc

iterations).

Fig. 16. Compared with vanilla APF, APF# can further increase the average
parameter freezing ratio (from 66.5% to 70.2% for LeNet-5, and from 62.4%
to 71.3% for LSTM) with accuracy preserved.

In Fig. 16, we show the training performance of LeNet-5
and LSTM under APF# against that under vanilla APF. To be
specific, in APF# we randomly freeze those unstable parameters
for 1 round with a probability of 0.5. Our measurements show
that APF# achieves a similar accuracy performance as APF (the
training improvement in the earlier phase under APF# is slower
but would catch up in later phase, similar to the well-known
behavior of Dropout), with a better communication compression
level. For LeNet-5 that additional performance gain is 5.5% and
for LSTM that is 14.2%.

In Fig. 17, we show the training performance of LeNet-5 and
ResNet-18 under APF++ against vanilla APF. In our setup, an
active parameter is put to freezing with a probability of K

4000 (for
LeNet-5) or K

2000 (for ResNet-18), and the associated freezing
length is randomly sampled from the interval [1, 1 + 1

20K],
where K is the round number. In Fig. 17a, while APF++ can
remarkably reduce the transmission amount, its aggressiveness
unfortunately compromises the model accuracy because LeNet-
5 is not over-parameterized for CIFAR-10 dataset; in contrast,
in Fig. 17b APF++ can substantially improve the parameter
frozen ratio of ResNet-18 (up to an average value of 77%),
without hurting the accuracy performance. Therefore, for over-
parameterized large models, it is suitable to adopt APF++ for
much better communication efficiency.
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Fig. 17. APF++ can substantially enhance the communication compression
level, without hurting ResNet accuracy.

Fig. 18. Training performance respectively under APF and APF+Quantization
(APF+Q).

G. Combination With Other Optimization Techniques

As a sparsification method, APF can be combined with other
non-sparsification methods to further enhance FL performance.
In this subsection, we evaluate the APF performance when
combined with a simple quantization method as well as the
FedProx optimization method [35].

Combining APF With Quantization. While APF works by
reducing the number of parameters to be transmitted, quanti-
zation means to reduce the cost to transmit each parameter, and
thus the two methods can be adopted simultaneously. To verify
that feasibility, we integrate APF with a simple quantization
method—using 16 bits instead of the default 32 bits to represent
each parameter.

In our implementation to realize such a combination, we
create a Quantization_Manager and stack it atop the
APF_Manager in Fig. 10. In the pushing phase, after the filter-
ing operation of APF, the Quantization_Manager takes
over the compressed parameters and calls Tensor.half()
provided by PyTorch to perform a second compression. In the
pulling phase, the Quantization_Manager first restores
the full precision, then the APF_Manager restores the full
model.

In Fig. 18, we show the APF convergence curve of LeNet and
LSTM respectively with and without Quantization. We find that
APF with Quantization (APF+Q)—with only a half of the ini-
tial communication cost—exhibits a very similar accuracy and
stability performance as vanilla APF, echoing the observation
of quantization impact in [5]. Overall, APF+Q can reduce the

Fig. 19. Training performance respectively under FedAvg, FedProx and Fed-
Prox+APF.

communication amount by 83.2% for LeNet model and 81.6%
for LSTM model. It can be expected that, such improvements
can be even larger if more aggressive quantization levels are
adopted.

Combination With FedProx. FedProx [35] is a federated op-
timization algorithm to address the challenges related to system
and statistical heterogeneity. In typical FL scenarios, partici-
pants with inferior resources would become stragglers, and they
can only process a portion of the local samples at the expected
synchronization barriers. At that moment, both dropping (as in
FedAvg) or naively incorporating those stragglers’ interme-
diate results would increase the statistical heterogeneity and
adversely impact convergence behavior. To improve training
efficiency and stability, FedProx also includes the intermediate
results from stragglers—yet with a special proximal term added
to the objective function to ensure convergence validity. That is,
in round k + 1 starting from global modelxk, each client i under
FedProx would optimize hi(x,xk) = F i(x) + μ

2 ‖ x− xk ‖2
instead of F i(x).

To confirm the feasibility of integrating APF with FedProx,
we create a FL micro-benchmark with both system and statis-
tical heterogeneity, following a method similar to the FedProx
paper [35]. In our measurements, we train LeNet-5 on CIFAR-10
datasets with 5 clients each hosting 2 label classes. Among
the clients there are two stragglers that can only process 25%
and 50% of the expected workloads in each round. In Fig. 19,
we respectively measure the training performance under (1)
FedAvg, (2) FedProx, and (3) FedProx+APF; here the FedProx
hyperparameter μ is set to the recommended value 0.01. From
Fig. 19a, by fully incorporating the results of all the clients, Fed-
Prox achieves much higher accuracy performance over FedAvg.
Moreover, when APF is adopted with FedProx, we can attain
similar accuracy performance with much less communication
cost: In average, APF freezes around 55.0% of all the parameters
over the training process. Therefore, APF can be effectively
combined with FedProx to achieve high accuracy as well as
low overhead for FL.

H. Hyper-Parameter Sensitivity Analysis

In this subsection, we systematically evaluate the sensitivity
of APF performance against various hyper-parameters (e.g.,
stability threshold Ts, stability check frequency Fc, learning
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Fig. 20. When the initial stability threshold is more loose, or when the stability
check is less frequent, LeNet-5 and LSTM can still converge well.

rate η, and the synchronization frequency Fs). Unless otherwise
specified, we experiment with the LeNet-5 model which is more
common in the literature.

Stability Threshold. As discussed in Section IV-B, to make
APF robust to stability threshold, we have introduced a mech-
anism that tightens the stability threshold each time most (e.g.,
80% in our setup) parameters become stable. To verify the
effectiveness of this approach, we purposely loosen the initial
stability threshold on effective perturbation from 0.05 to 0.5, and
then train LeNet-5 again following the setup in Section VII-A.
Fig. 20a depicts the corresponding accuracy curve, together with
the instantaneous ratio of frozen parameter. Comparing Fig. 20a
with Fig. 11a we can easily find that, under a looser initial
stability threshold, the number of frozen parameters increases
more rapidly, but the price paid is that the instantaneous accu-
racy is slightly below that of standard FL (before round-600).
However, after several tightening actions, APF gradually catches
up with—and finally outperforms—standard FL in accuracy.
Therefore, our APF algorithm can still yield good performance
even with inadequate hyper-parameters.

Stability Check Frequency. To evaluate the impact of the
stability check frequency, we resort to an experiment as shown
in Fig. 20b. In Fig. 20b, we train the LSTM model with Fc

respectively be Fs and 5Fs, the later meaning that we update
the freezing status once for 5 rounds. Correspondingly, for fair
comparison, when Fc is 5 we increase the freezing round by a
constant of 5 (instead of 1) if the parameter stability continues,
and adopt a scale-down factor of 5 (instead of 2) if the stability
trend no longer persists. From Fig. 20b, the two different Fc

setups yield a similar training performance in both accuracy and
stability ratio, confirming the robustness of our APF algorithm
against the Fc hyper-parameter.

Learning Rate. We further evaluate the performance sensitiv-
ity of APF against different learning rate setups. In Fig. 21a,
we respectively set the learning rate η to 0.01 and 0.001, and
measure the accuracy and frozen ratio of APF in each case.
Fig. 21a reveals that with a larger learning rate, the model
accuracy is enhanced at a faster pace, and in the meantime the
model parameters get stable more rapidly.

Recall that Theorem 2 suggests APF can yield better con-
vergence guarantee with a decaying learning rate (although our
experiments empirically show that APF does not compromise

Fig. 21. APF performance when training LeNet-5 with different or decaying
learning rates.

the model accuracy even without such a decay). To set up the
decaying learning rate, we initialize η to 0.1 and multiply it
with a factor of 0.99 once after every 10 epochs, and Fig. 21b
shows the training performance with and without APF. We
notice that, the general trend of model accuracy and parameter
frozen ratio with learning rate decay are similar as before except
for two minor differences. First, with a larger learning rate in
the beginning (0.1 in Fig. 21b against 0.01 in Fig. 21a), the
model parameters become stable much more rapidly. Second,
during the later phase the parameter frozen rate begins to drop
slowly—this is because a decaying learning rate would allow the
model parameters to keep refined subtly. More importantly, with
such a decay learning rate, the accuracy benefit of APF against
vanilla FedAvg becomes even larger: After 3000 rounds, APF
attains an accuracy superiority of 0.033—with an accumulated
communication reduction of 61.9%. To summarize, APF can
make salient performance improvement regardless of the partic-
ular learning rate setup.

Synchronization Frequency. Note that in this article we use
synchronization frequency Fs to control the number of local
iterations within each round; hereFs is equivalent to the number-
of-local-epochs (E) hyper-parameter in other FL papers [32],
[35]—because all clients share the same batch size and local
dataset size. We then evaluate how Fs would affect the APF
performance. Our experiments are conducted under a non-IID
setup with 5 clients each hosting two CIFAR-10 classes, because
in the literature [36], [56] Fs may severely impact the training
performance for cases with non-IID data. In our measurements,
we setFs respectively to 10, 100 and 500, and depict the accuracy
and parameter frozen ratio in Fig. 22. On the one hand, with
less frequent synchronization (Fs = 500), parameters would be
refined more extensively within each round, therefore the model
accuracy and the parameter frozen ratio would increase faster
in the number of communication rounds. On the other hand,
less frequent synchronization would make the aggregated model
updates less accurate, thus in Fig. 22a the model training process
with Fs = 500 stagnates at a suboptimal accuracy.

I. Computation and Memory Overheads

The last question we seek to answer is, what are the memory
and computation overheads of APF? We measure the extra
computation time and physical memory consumption incurred
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Fig. 22. APF performance under different synchronization frequency setups.

TABLE IV
COMPUTATION (EXTRA TIME REQUIRED FOR EACH ROUND IN AVERAGE) AND

MEMORY OVERHEADS OF APF

by APF. Table IV lists the overheads for different models. As
implied in Table IV, for small models like LeNet and LSTM,
both the computation and memory overheads are fairly small
(< 2.35%); for larger models like ResNet-18, because its model
size is more comparable to that of input and feature map, APF’s
memory overhead becomes larger (8.51%). Overall, consider-
ing the salient reduction of network transmission volume and
convergence time, the overhead of APF is indeed acceptable.

VIII. ADDITIONAL RELATED WORK

In this article, we developed a parameter-freezing method with
the objective of mitigating the model synchronization bottle-
neck. In this section, we briefly survey the related work that
shares a similar objective (i.e., speeding up model synchroniza-
tion with either communication compression or transmission
scheduling), or share a similar solution methodology (i.e., with
parameter-freezing).

Communication Compression Techniques. Recall that in Sec-
tion II we have discussed a series of sparification and quan-
tization methods. Apart from sparsification and quantization,
a third solution category for communication compression is
matrix factorization [61], [67]. Matrix factorization works by
decoupling the original model parameters as the outer product
of two vectors (called sufficient factors). In model synchro-
nization, only those sufficient factors are transmitted to reduce
the bandwidth consumption. Yet, that decoupling method is
mainly designed for dense fully-connected layers, thus suffering
restricted applicability for general models.

Communication Scheduling Techniques. To speed up model
synchronization, another common methodology is to optimize

the transmission schedule of gradients from different clients or
layers.

Regarding the transmission coordination of different clients,
by default all clients shall communicate their gradients in syn-
chronous mode (with Bulk Synchronous Parallel or BSP) [67],
yet it may cause severe resource wastage due to stragglers
and network collisions. To avoid such wastage, some works
respectively proposed SSP [16], [25] and R 2 SP [12] to properly
relax the synchronization barrier, trading a little bit gradient
accuracy for improved resource efficiency.

Regarding the transmission coordination of different lay-
ers, to reduce the time blocked by gradient transmission,
Zhang et. al [50], [67] proposed wait-free-backpropagation,
which pipelines gradient communication with the layer-wise
gradient computation. Besides, parameters that are updated later
in backward propagation would be accessed earlier in the next
iteration; noticing that property, several works [22], [29], [46]
proposed to assign proper priorities to gradients of different
layers, so that gradients to be accessed earlier do not need to
wait behind others in network contention. These works achieve
good performance in practice, yet they are orthogonal to our
work.

Parameter Freezing Techniques. Parameter freezing is a tech-
nique already adopted in the literature—yet mainly for com-
putation acceleration. Brock et al. [9] proposed the FreezeOut
mechanism that gradually froze the first few layers of a deep neu-
ral network—which were observed to converge faster—to avoid
the computation cost of calculating their gradients. KGT [57]
and AutoFreeze [37] go further by using an adaptive approach
to choose which layers are frozen, so as to accelerate model
training while preserving accuracy. However, their operation
granularity is an entire layer, which is too coarse given the
analysis in Section III. Worse, because there was no parameter
unfreezing mechanism, it has been shown that such methods like
FreezeOut would degrade the accuracy performance despite the
computation speedup [9].

IX. DISCUSSIONS

APF compatibility with differential privacy. So far, we are
assuming that the original gradients are accessible over the
FL process; yet, to avoid privacy leakage, gradients are often
encrypted before being collected to the FL server, and a typical
encryption method is differential privacy (DP) [45], [51], [60].
Differential privacy means to add random noise to the original
gradients. That noise follows a Gaussian or Laplace distribution
whose mean is set to zero, and the noise scale is controlled by a
hyper-parameter ε. Regarding the impact of DP on our APF al-
gorithm, we note that the added noise—which oscillates around
0—would make the resultant gradients look more stable, i.e.,
rendering the calculated effective perturbation metric smaller.
For example, if in extreme case the noise component dominates
the gradient value, the effective perturbation would also be 0.
Yet, large noise would severely impair the model accuracy, and in
practice the injected noise is set much smaller than the original
gradient values [60]. Therefore, when DP is adopted, we can
choose a tighter stability threshold to counteract its impact.
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Placement of Freezing Mask Computation. Note that in our
implementation (Section VI-B), the freezing mask Mis_frozen

is maintained purely on clients, with the objective of trading
slightly more computation for communication efficiency (no
extra communication cost). In other cases where computation is
more expensive on clients (like IoT devices), we can also place
mask computations on the FL server (or an edge server). Besides,
instead of transmitting the full mask vector, we can otherwise
transfer a dense representation (including change-indexes and
change-values), for mask updating would be relatively slow and
a dense representation is more efficient.

Applicability in cluster environments. While APF is proposed
for FL scenarios, it can also be applied to cluster environments
with cutting-edge hardware like GPUs, where communication
remains to be a bottleneck compared to the large GPU through-
put. Yet, compared with FL scenarios, models trained in such
clusters are usually much more complex, including various
structure types like GNNs [54] and Transformers [18]; mean-
while, achieving SOTA accuracy is often a primary concern,
rendering manufactured training interference more risky. We
plan to customize our work to GPU clusters later, with much
broader evaluations on advanced deep learning models.

X. CONCLUSION

In this work, to reduce the communication overhead in FL, we
have proposed a novel scheme called Adaptive Parameter Freez-
ing (APF), which seeks to identify the stable parameters and
then avoid their synchronization. APF identifies the stabilized
parameters based on their effective perturbation and tentatively
freezes the stable parameters for certain time intervals, which are
adjusted in an additively-increase and multiplicatively-decrease
manner. We implemented APF and its more aggressive variants
based on PyTorch, and testbed experiments have confirmed that
it can largely improve the FL communication efficiency, with
comparable or even better accuracy performance.
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