
1

Accelerating Distributed Learning in Non-Dedicated Environments

Chen Chen, Member, IEEE, Qizhen Weng, Student Member, IEEE, Wei Wang, Member, IEEE,
Baochun Li, Fellow, IEEE, and Bo Li, Fellow, IEEE

Abstract—Machine learning (ML) models are increasingly trained with distributed workers possessing heterogeneous resources. In
such scenarios, model training efficiency may be negatively affected by stragglers—workers that run much slower than others. Efficient
model training requires eliminating such stragglers, yet for modern ML workloads, existing load balancing strategies are inefficient and
even infeasible. In this paper, we propose a novel strategy, called semi-dynamic load balancing, to eliminate stragglers of distributed
ML workloads. The key insight is that ML workers shall be load-balanced at iteration boundaries, being non-intrusive to intra-iteration
execution. Based on it we further develop LB-BSP, an integrated worker coordination mechanism that adapts workers’ load to their
instantaneous processing capabilities—by right-sizing the sample batches at the synchronization barriers. We have designed distinct
load tuning algorithms for ML in CPU clusters, in GPU clusters as well as in federated learning setups, based on their respective
characteristics. LB-BSP has been implemented as a Python module for ML frameworks like TensorFlow and PyTorch. Our EC2
deployment confirms that LB-BSP is practical, effective and light-weight, and is able to accelerating distributed training by up to 54%.

Index Terms—Distributed Machine Learning, Synchronization, Load Balancing, Federated Learning.

F

1 INTRODUCTION

Machine learning (ML) models, such as deep neural net-
works, are widely used for a range of applications to attain
state-of-the-art performance [1], [2], [3], [4]. Owing to their
compute-intensive nature, ML models are often trained in
a distributed manner [5], [6], [7], [8]: many worker threads
iteratively process small subsets of the training data (i.e.,
sample batches), and use the computed updates to refine the
global model parameters.

With the surge of ML training demands, it has become
increasingly common to serve ML jobs in non-dedicated
environments, e.g., with heterogeneous hardware from spot
markets [9], or with time-varying resources from shared pro-
duction clusters [10], [11], [12]. In such cases, workers with
less capable resources would progress slower and become
stragglers. Under the popular Bulk Synchronous Parallel (BSP)
scheme, fast workers have to wait for slow ones at the end of
each iteration, and stragglers would thus impair the model
training efficiency.

To mitigate the negative effect of stragglers, a large num-
ber of mechanisms have been developed in the literature.
For example, some [5], [13], [14] have proposed to relax the
synchronization barriers to avoid end-of-iteration resource
wastage, yet this negatively affects the update quality and
requires more iterations for models to converge. In fact,
stragglers in non-dedicated clusters are mainly caused by
the mismatch between workers’ load and their processing
capability. In response, the most effective strategy to elimi-
nate stragglers is to balance the load of workers according
to their instantaneous processing capability.

Nonetheless, ML workloads pose new challenges to the
load balancing community. Existing load balancing schemes

• Chen Chen, Qizhen Weng, Wei Wang and Bo Li are with the Department
of Computer Science and Engineering, Hong Kong University of Science
and Technology, Hong Kong.

• Baochun Li is with the Department of Electrical and Computer Engineer-
ing, University of Toronto, Canada.

designed for traditional multi-core or big data scenarios can
be broadly classified into two categories: static and dynamic
load balancing (§2.2.3). Yet, different from those traditional
workloads such as HPC processing [15], [16] or MapRe-
duce [17], ML computations are highly structured (with
thousands of short iterations) and also tensor-based (samples
in each iteration are packaged into a non-divisible matrix
for fast processing). Static load balancing approaches [18],
[19], [20] are not aware of runtime resource variations, and
dynamic approaches [21], [22], [23], which are mainly based
on work stealing [15], [16], [24], are also deficient for ML
workloads. First, work stealing usually requires fine-grained
worker progress monitoring and runtime load migration,
which is inefficient for an iterative model training process.
Second, runtime load migration assumes that the samples be
processed one by one, yet such a sequential manner hinders
the full utilization of hardware accelerators like GPUs that
are common for model ML frameworks [8], [25], [26].

In this paper, we design a new load balancing strat-
egy for distributed model training workloads, called semi-
dynamic load balancing. In broad strokes, the high-level idea is
to perform all load balancing actions—worker monitoring,
straggler identification and load redistribution—on the iter-
ation boundaries, with load adjustment enforced by tuning
each worker’s sample batch size. Following such a high-level
idea, we propose Load-Balanced Bulk Synchronous Parallel
(LB-BSP), a composite scheme atop BSP that seeks to equal-
ize all the workers’ batch processing times by speculatively
configuring their batch sizes at the synchronization barriers.
An immediate question is then how to set the batch size
at the synchronization barriers for the best load balancing
effect in the upcoming iteration. This evolves into different
challenges for CPU and GPU clusters that are two typical
platform types for distributed learning.

For a CPU worker, our profiling work (§3.2.1) shows
that its batch processing time is proportional to its batch
size, with the proportion coefficient representing the instan-
taneous sample processing capability. In shared clusters,

2

such a coefficient may vary drastically with the temporal
resources [12], [27], and thus shall be predicted prior to
each iteration. For this purpose, we employ a special kind of
recurrent neural network called NARX [28], which can make
accurate performance predictions by taking into account the
driving resources such as CPU and memory.

In multi-tenant GPU clusters [10], [29], [11], [30], a GPU
is usually dedicated to one worker without sharing. But the
relationship between a GPU worker’s batch processing time
and batch size is not proportional and difficult to profile
at runtime (§3.3.1). Therefore, instead of the profiling-based
analytical methods, we propose an iterative batch size tuning
algorithm that can efficiently approximate the load-balanced
state without prior knowledge.

Furthermore, while our method of worker-adaptive
batch sizing can effectively eliminate stragglers, it inevitably
results in non-uniform batch sizes among different workers,
which may negatively affect the training accuracy. To ensure
that model training process can still converge correctly even
with inconsistent batch sizes, we further propose weighted
gradient aggregation, in which the batch size of each worker
is used as the weight of its gradient in aggregation.

Moreover, since a preliminary version of this work [31]
only focuses on cluster environments yet neglects the
rapidly-emerging trend of practicing ML with edge devices,
in this paper we extend our LB-BSP solution for federated
learning (FL) setups. FL is a popular paradigm that allows
edge clients to collaborate in model training without reveal-
ing their local private data [32], [33], [34]. It adopts a special
training algorithm called FedAvg, which includes multiple
local iterations in each synchronization round. Meanwhile,
samples on different clients are usually of different distribu-
tions and cannot be migrated under the privacy requirement
of FL. Our extended LB-BSP design complies with these
properties, and can saliently speed up model convergence
with negligible accuracy loss.

We have implemented LB-BSP with a Python module
that can be easily integrated into existing ML frameworks
like TensorFlow [8], PyTorch [26] and MXNet [25]. Our ex-
periments on Amazon EC2 with popular benchmark train-
ing workloads show that LB-BSP can effectively eliminate
stragglers in non-dedicated clusters, achieving near-optimal
training efficiency with negligible overhead. In particular, in
a 16-node heterogeneous GPU cluster, LB-BSP outperforms
existing worker coordination schemes by over 54%; and in
a 32-node shared CPU cluster, it attains an improvement of
up to 38.7% over existing straggler mitigating approaches.

2 BACKGROUND AND MOTIVATION

2.1 Research Background

Basics of Machine Learning. Given a machine learning
(ML) model, the objective of model training process is to
find the model parameters ω? that can minimize the loss
function L(ω) over the labeled training dataset S, i.e.,

ω? = argmin
ω
L(ω) = argmin

ω

1

|S|
∑

s∈S
l(s, ω). (1)

Here, l(s, ω) is the loss value for a data sample s in S.

A popular training algorithm is mini-batch Stochastic Gra-
dient Descent [5], [35], or simply SGD1. Its basic idea is to
iteratively refine model parameters ω with the gradients g
calculated from the sample batches, i.e.,

ωk+1 = ωk− ηgk, where gk =
1

|Bk|
∑

s∈Bk
∇l(s, ωk). (2)

Here, k is the iteration number, Bk is a batch randomly
sampled from the training dataset S, and η is the learning
rate. Such training iterations would repeat until the model
parameters ω finally converge.

Given the stochastic nature of SGD, the relationship
between training completion (i.e., model convergence) and
the sample processing amount is not deterministic, and
the model training efficiency is usually decoupled into
two parts: hardware efficiency—how fast each iteration can
be finished, and statistical efficiency—how many iterations
it takes towards model convergence. Therefore, efficient
model training requires both high hardware efficiency and
high statistical efficiency.

Distributed Model Training. To accelerate the model train-
ing process, it has been increasingly common to train ML
models in a distributed manner, with a pool of parallel
workers. Those workers typically collaborate in a syn-
chronous mode (i.e., BSP) [36], [37], [38], under the Parameter
Server (PS) [13], [6], [38] or All-Reduce [37] architecture.

With the widespread adoption of ML techniques, dis-
tributed model training is now conducted in various cluster
environments, and we broadly classify them into two types:
dedicated and non-dedicated clusters.

(1) Dedicated clusters implies that the clusters are homo-
geneous, and are composed of cutting-edge GPUs dedicated
to one training job. For example, Facebook’s well-known
work of training ImageNet in one hour [37] is conducted in
such a dedicated cluster with 256 Tesla P100 GPUs. While
dedicated clusters can yield high training efficiency, they are
expensive to maintain and not widely accessible [37], [39].

(2) Non-dedicated clusters refer to the clusters that are
composed of heterogeneous hardware or shared by multiple
tenants. Since newer CPU or GPU generations get released
at a rapid pace, a budget-limited user may choose to train
models with a set of heterogeneous hardware (e.g., GPUs)
from the local inventory [40], [41], or from the spot markets
such as Amazon EC2 [9]. Meanwhile, large companies [12],
[10] may host multiple ML jobs in their production clusters
with mixed hardware types; for fairness, users may be
allocated heterogeneous hardware [42], [43], [44], and their
resource allocation may also be dynamically adjusted by
cluster schedulers for resource packing purpose [11], [30].
Moreover, in recent years federated learning (FL) [32], [33],
[45], [34] has emerged as a very promising solution that en-
ables multiple clients to join their computing resources and
local data in model training with data privacy preserved.
A FL setup is essentially a non-dedicated cluster, because
without centralized resource allocation, clients’ processing
capabilities are often inconsistent.

1. For simplicity, we focus on standard SGD in this paper. Yet our
LB-BSP solution can also be applied to all SGD variants (e.g., Adam or
RMSProp, which make use of model gradients in different manners),
because LB-BSP itself does not compromise the aggregated gradients.

3

While model training in non-dedicated clusters is in-
creasingly common, it is far less efficient than training
in dedicated clusters due to the straggler problem, which
is more severe in non-dedicated clusters. For clarity, we
classify stragglers into two groups: non-deterministic and
deterministic stragglers.

(1) Non-deterministic stragglers are caused by tempo-
rary disturbance like OS jitter or garbage collection, usually
being transient and slight. They occur and vanish naturally
in both dedicated and non-dedicated clusters.

(2) Deterministic stragglers are caused by heterogeneous
worker resource quality or quantity, often severe and long-
lasting. They occur only in non-dedicated clusters.

Compared with non-deterministic stragglers, determin-
istic stragglers are more harmful to distributed model train-
ing, by forcing fast workers to always wait for the slowest
one in each iteration if under the popular BSP scheme. With
the increasing prevalence of non-dedicated clusters, it is
thus in urgent need to tame such deterministic stragglers.

2.2 Related Work
Stragglers have long been a thorny problem in distributed
computing systems, and in the research literature there have
been many attempts to tackle such a problem.

2.2.1 Bypassing Stragglers with Relaxed Synchronization

To exempt fast workers from waiting for stragglers, two
worker coordinating schemes with the synchronization con-
straint compromised have been proposed: ASynchronous
Parallel (ASP), and Stale Synchronous Parallel (SSP).

ASP. In ASP [5], workers can independently proceed to the
next iteration without waiting for others. In this way, ASP
wastes no compute cycles and attains high hardware effi-
ciency. However, the price paid is low statistical efficiency:
without global synchronization, the gradient computation
often uses stale parameters, which yields low-quality up-
dates and requires more iterations to converge [13], [46].

SSP. SSP [13], [14] comes as a middle ground between BSP
and ASP. In SSP, fast workers wait for the stragglers only
when the parameter staleness reaches a particular threshold.
SSP can then accelerate ML iterations while providing a
convergence guarantee. Nonetheless, SSP focuses primarily
on non-deterministic stragglers, expecting the straggling
workers to catch up soon in later iterations. This works for
homogeneous clusters, but in non-dedicated clusters the de-
terministic stragglers may persist across many consecutive
iterations, and the staleness quota of SSP can be quickly
used up. After the quota is used up, fast workers will
have to wait for the slowest ones in almost every iteration,
leading to low hardware efficiency.

2.2.2 Mitigating Stragglers by Redundant Execution

Redundant execution [47], [48] is widely adopted to miti-
gate stragglers in traditional data analytics frameworks like
MapReduce [17] and Spark [49]. It launches multiple copies
of a straggling task and accepts results only from the one
that finishes first. It has also been recently introduced to
the context of distributed machine learning: Chen et al. [50]
proposed to train deep neural models with extra backup

workers and to use gradients from those workers finishing
the earliest. However, redundant execution is merely a
suboptimal solution: it mitigates some worst-case stragglers
but fails to eliminate all of the stragglers completely. Even
worse, backup workers themselves would consume addi-
tional resources.

2.2.3 Eliminating Stragglers by Load Balancing

The solutions we have discussed so far are agnostic to the
root causes of stragglers, and they do not seek to prevent
stragglers from occurring. As we mentioned, efficiency loss
in non-dedicated clusters is primarily caused by determinis-
tic stragglers, whose root cause is very clear—the mismatch
between the workers’ loads and their processing capabilities
(existing ML frameworks [8], [25], [51] blindly assign a uni-
form batch load to all the workers). Therefore, to fundamen-
tally eliminate such deterministic stragglers related to load-
resource mismatching, we should resort to load balancing
techniques. Load balancing is a classical research topic [52]
in the parallel processing community, and existing solutions
can be broadly classified into two types: static and dynamic
load balancing.

Static Load Balancing. Static load balancing strategies [18],
[19], [20], [53] set a constant load for each worker—as the
execution commences—under a given scheme like Round-
Robin [19] or with some static knowledge of the worker
status [20], [53]. It does not require real-time progress mea-
surements or cross-worker communication, but cannot react
to resource variations that are common in non-dedicated
clusters.

Dynamic Load Balancing. Dynamic load balancing strate-
gies use work-stealing or work-shedding to redistribute load
from heavily-loaded workers to lightly-loaded ones at run-
time [15], [16], [24], [21], [22]. They are mostly developed
for traditional task-based parallel programming models in
multi-core or HPC systems. Recently, FlexRR [23] adopted
such a dynamic strategy to tackle (non-deterministic) strag-
glers for ML workloads. It measures the workers’ instan-
taneous progress at a fine granularity (100 checks per iter-
ation); once a straggling worker lags behind others over a
given threshold, it would yield certain sample processing
load to a faster worker. Responding to dynamic changes of
resources, dynamic load balancing schemes usually outper-
form static ones, but the cost paid is much higher computa-
tion and communication overhead (for progress monitoring,
status collection and workload migration), which is not
desirable in resource-intensive ML training. To reduce such
overhead, FlexRR conducts straggler detection and load mi-
gration within designated worker groups, which nonetheless
leads to suboptimal load balancing performance due to its
lack of global coordination.

Moreover, a key assumption of dynamic load balanc-
ing strategies is that, workloads shall be processed in a
sequential manner so that they can be arbitrarily split and
transferred at runtime. However, this is not true for modern
ML workloads. Training ML models is compute-intensive,
and parallel-processing accelerators like GPUs are com-
monly used in practice, for which sequential processing
is highly inefficient (due to the fixed accelerator launching
overhead that is independent to batch size, as will be shown

4

later in Fig. 4 of §3.3.1). To fully exploit the power of
such accelerators, mainstream ML frameworks wrap all the
samples in a batch as a tensor matrix (e.g., a Tensor in
TensorFlow/PyTorch, or an NDArray in MXNet), which is
concurrently processed in a single round. Given such all-or-
nothing processing, it is hard to measure fine-grained worker
progress or adjust its load in the midst of an iteration,
making dynamic load balancing simply infeasible.

2.3 Semi-Dynamic Load Balancing

Objectives. Based on our discussions so far, our objective is
to develop a load balancing strategy for ML workloads with
the following properties:

(1) Practicality. It should be compatible with the style of
tensor-based processing in existing ML frameworks.

(2) Effectiveness. It should be aware of the instantaneous
worker execution status, and adjust the workers’ load in a
coordinated manner to attain the best load balancing effect.

(3) Efficiency. It should not interfere with regular pro-
cessing within each iteration, and should try to be light-
weight by avoiding cross-worker data movement.

Design Philosophy. To meet these objectives, we propose
a new load balancing strategy called semi-dynamic load bal-
ancing. Tailored for ML workloads, its basic idea is to have
workers’ load be static within each iteration but dynamic
across different iterations. In particular, we offload all load
balancing operations—status measurements, straggler de-
tection and load adjustment—at the iteration boundaries of
BSP, using the batch size as a tool for load tuning. This strat-
egy is feasible and can satisfy all of our design objectives,
which we rationalize from the following three aspects:

(1) Measuring worker status at iteration boundaries.
Training iterations in modern ML frameworks are relatively
short (in seconds or even sub-seconds, as we show later in
Fig. 1 and Fig. 4), and these iterations share a high similarity
because an identical computation graph is used in each
iteration. Therefore, the execution status in recent iterations
is a valuable reference for that of the near future, relieving
the need for costly intra-iteration progress measurements.

(2) Detecting stragglers at BSP iteration boundaries.
Under BSP there is a synchronization barrier at the end of
each iteration, offering a natural opportunity to centralize all
the workers’ status information and optimize, with a global
view, their load for the best load balancing effect.

(3) Adjusting load by tuning the batch size at iteration
boundaries. The batch size is a hyper-parameter that, as each
iteration commences, dictates how many samples should
be encapsulated into a tensor batch for processing in that
iteration. It accurately controls a worker’s load because each
sample consumes identical compute cycles. Besides, given
the stochastic (i.e., sample-insensitive) nature of SGD, load
migration can be realized by increasing the batch size of
one worker and reducing that on another. This can avoid
the communication overhead without compromising the
training convergence.

In the next section, we show how the philosophy of semi-
dynamic load balancing can be implemented in practice.

t batch processing time xi batch size on worker-i
tp computation time ẋ initial batch size
tm communication time X nẋ (n is worker number)
Γ (·) function between tp and x v sample processing speed

TABLE 1: Summary of important notations.

3 LB-BSP
In this section, we present Load-Balanced Bulk Synchronous
Parallel (LB-BSP), an integrated scheme atop BSP, for ef-
ficient distributed learning in non-dedicated clusters. We
start with the problem formulation of LB-BSP, and then
respectively elaborate our solutions for CPU clusters, GPU
clusters and federated learning setups.

3.1 Problem Formulation
In each model training iteration, given the sample batch,
a worker first calculates a local gradient and then remotely
refines the global model. Here we refer to the entire duration
as the batch processing time, denoted by t. It can be divided
into two parts: computation time (tp), which measures the
time taken to compute the gradient, and communication time2

(tm), which measures the time taken for data transmission.
In a nutshell, LB-BSP seeks to equalize t on different

workers by rightsizing their sample batches at the synchro-
nization barriers. This can be formulated as an optimization
problem. Given n workers with the initial batch size ẋ, we
want to find the worker batch sizes ~x = (x1, x2, ..., xn) that
can minimize the longest batch processing time among all
workers, i.e.,

min
~x=(x1,x2,...,xn)

max
i∈{1,2,...n}

ti,

s.t. ti = tpi + tmi , i = 1, . . . , n;

tpi = Γi(xi), i = 1, . . . , n;∑n

i=1
xi = X = nẋ.

(3)

Here Γi(·) is the function between worker-i’s computation
time tpi and its batch size xi. The last constraint ensures
that the total number of samples processed in each iteration
remains the same as that in BSP. Table 1 summarizes the
important notations used in the paper.

Solution Overview. Solving problem (3) poses different
challenges to CPU and GPU clusters. In CPU clusters, ti
increases linearly with xi, but that ratio varies with the tem-
poral resources. In GPU clusters, the relationship between
ti and xi is non-linear and hard to profile at runtime. Based
on their respective characteristics, we design an analytical
method that directly configures the optimal ~x for CPU
clusters, and a numerical method that iteratively approaches
the optimal ~x for GPU clusters.

3.2 LB-BSP in CPU Clusters
We summarize some typical scenarios where models are
trained in CPU clusters without accelerators like GPUs:

(1) Non-neural-network Model Training. Many tradi-
tional ML applications like Support Vector Machines (SVM)

2. Communication and computation are partially overlapped [36],
[37], [38] in existing ML frameworks (e.g., TensorFlow, MXNet); for
clarity, communication time in our definition excludes the overlapped
periods.

5

Fig. 1: The relationship between computation time and batch
size for different EC2 CPU instances.

or Logistic Regression (LR) demand less computing re-
sources than neural networks. They are usually trained in
CPU clusters [54], [12], [23], [55].

(2) Non-urgent Model Training. Non-urgent ML tasks
may also be trained in CPU clusters opportunistically with
leftover resources [56], [12]. For example, to improve cluster
utilization, Facebook trains some peripheral face recognition
models with the off-peak portions of CPU servers in the
diurnal cycle, where the CPU resources would otherwise be
wasted [12].

We next present the techniques to fully exploit available
resources in such non-dedicated CPU clusters to attain the
best model training efficiency.

3.2.1 Performance Characterization of CPU Workers

Static Characteristics. To solve problem (3) for CPU clusters,
we first characterize the static properties of CPU workers
by measuring their performance against different batch size
configurations when there is no resource contention.

(1) Negligible Communication Time: tp � tm (t ≈ tp).
Model training is a compute-intensive task for CPU work-
ers, and with built-in optimizations [36] of modern ML
frameworks, communication can be hidden by the long
computation time (tp). In our measurements on EC2, when
training the Inception-V3 model on ImageNet dataset (in-
troduced later in §5.1) with 32 workers and one separate
PS (c5.2xlarge instances with ≤ 10Gbps bandwidth), tp

takes more than 99% of the batch processing time t.
(2) Linear Relationship: Γ (x) = x/v.As batch size quan-

tifies the iteration load, for CPU processors the computation
time tp is proportional to the batch size x. To confirm that,
we respectively train the ResNet-32 and Inception-V3 model
with different types of EC2 instances. We vary x and record
the corresponded computation time tp in Fig. 1, which in
each case exhibits strong linearity between x and tp. Let v
be the ratio of x to tp, i.e., the sample processing speed, we
then have t ≈ tp = Γ (x) = x/v.

Given the characteristics above, we solve optimization
problem (3) with xi = vi∑n

j=1 vj
X . Note that such an an-

alytical method essentially merges straggler detection and
elimination together. In a nutshell, to set the worker batch
size for an upcoming iteration, we only need to know their
sample processing speed in that iteration.

Challenges for LB-BSP in shared CPU clusters. Although
a CPU worker’s batch size can be determined with its
sample processing speed, when training with resource con-
tention in shared clusters, that sample processing speed may

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized CPU Usage

1

2

3

4

5

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

ResNet32 [CIFAR-10]
Inception-V3 [ImageNet]

0.6 0.7 0.8 0.9 1.0
Normalized RAM Usage

1

3

5

7

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

ResNet32 [CIFAR-10]
Inception-V3 [ImageNet]

Fig. 2: Sample processing speed is affected by CPU or
memory resources. Measurements are conducted with the
stress-ng tool [57] on a c5.2xlarge instance (with swap
spaces enabled). The resource usage and iteration time are
normalized by the monopolizing case. Each point is an
average of 100 iterations.

vary dynamically. Therefore, to load-balance workers with
adjustments only at the iteration boundaries, we need to
predict their sample processing speed before the start of an
iteration. As stragglers in non-dedicated CPU clusters can be
deterministic and non-deterministic, an ideal prediction ap-
proach should be robust to non-deterministic perturbations
to avoid over-reaction or oscillation. It should also react to
deterministic resource variations quickly.

3.2.2 Predicting Sample Processing Speed

Potential Approaches. A simple solution is to use the last
iteration’s speed or the Exponential Moving Average (EMA)
speed as the predicted one. However, the former is not
robust to temporary perturbations, and the latter cannot
react quickly to drastic resource variations.

Speed prediction belongs to a classical research
problem—time series prediction, for which many statistical
or learning-based techniques have been proposed. As a
statistical approach, Autoregressive Integrated Moving Aver-
age (ARIMA) [58] makes predictions with statistics like
average and deviation. Meanwhile, models based on Re-
current Neural Network (RNN) [59] (like plain RNN and
LSTM [60]), with the ability to maintain inner memory, have
been applied in forecasting real-world time series like stock
price [61] or transport flow [62].

However, the prediction performance of all the above
approaches is limited by their blindness to the underlying re-
sources. In fact, variations of the driving resources like CPU
and memory3 closely relate to the instantaneous worker
processing capability.

This is supported by Fig. 2, in which the model training
processes are slowed down after we restrict their resource
usage. Such driving resources can help to distinguish the
deterministic straggling factors from random perturbations
and make more accurate prediction. To this end, we find that
Nonlinear AutoRegressive eXogenous (NARX) model [63], [28]
is a good fit for the prediction of sample processing speed.

NARX Approach. The NARX model we use is basically an
extended recurrent neural network that takes three series as

3. Other resources (e.g., disk I/O, heat) may also impact sample
processing speed. Yet instead of exhaustively exploring all the potential
impact factors, our goal here is to show the benefits of including the
driving resources in prediction, and CPU and memory are two easy-to-
measure factors for that.

6

Feedforward Network

z-1 z-1z-1z-1 z-1z-1

ck

vk

ck-1 cck-d

mk
mk-1 mk-dm vk-1vk-dv

Fig. 3: NARX architecture.

inputs: past values of sample processing speed (v), current
and past values of the two driving resources—CPU and
memory usage (c/m). Essentially, NARX aims to learn a
nonlinear function F (·) between the predicted speed and a
limited view (specified with a look-back window size) of the
input series:

vk = F (vk−1, ..., vk−dv , ck, ..., ck−dc ,mk, ...,mk−dm). (4)

Here vk, ck and mk represent the value of speed, CPU and
memory usage in iteration k, respectively; dv , dc and dm
represent the corresponded look-back window size of each
series. Fig. 3 shows the unfolded architecture of the NARX
model, in which the input series are fed into a feedforward
neural network.

The batch size adjusting process with NARX is elabo-
rated in Alg.1. In practice, to ensure high prediction accu-
racy, we maintain a NARX model for each worker, which
is trained with the historical execution information (i.e., v,
c and m). To avoid high model complexity, as in existing
prediction works [64], [65], the look-back window sizes for
all the three input series are set to 2, and we include only
one hidden layer in the feedforward network. Such a simple
model can avoid over-fitting and converge fast. Our later
evaluation (§5.4.1) confirms that such a NARX-based ap-
proach can make better predictions than other approaches.

3.3 LB-BSP in GPU Clusters

With strong parallel processing capability, GPUs are the
workhorse hardware for training deep neural networks [36],
[37], [10]. As elaborated in §2.1, neural network models
may be trained in non-dedicated GPU clusters: with het-
erogeneous GPU instances from the spot markets [9], or in
shared GPU clusters [10], [29], [11], [30] where workers may
inter-connect at different locality levels, under asymmetric
topologies, or be migrated across machines for resource
consolidation. Nonetheless, implementing LB-BSP in non-
dedicated GPU clusters renders a challenge different with
that in CPU clusters. In this part, we first characterize the
performance of standalone GPU workers, and then present
our LB-BSP algorithm for GPU clusters.

3.3.1 Performance Characterization of GPU Workers

Static Characteristics. To solve problem (3) for GPU clus-
ters, we first profile the static properties of GPU workers.
For representativeness, our profiling is conducted with a
small neural network—CifarNet [66], and a large neural
network—Inception-V3 (their descriptions deferred to §5.1).

Algorithm 1 Batch Size Updating in CPU clusters

Input: {xk−1
i }, {tk−1

i }, {cki}, {mk
i} . last batch size,

last batch processing time, current cpu & memory usage of all the
workers(i=1,2,...,n)

Require: past values of {vi}, {ci}, {mi}, i = 1, 2, ..., n;
Fi(·), i = 1, 2, ..., n. . NARX model for each worker

1: procedure CPU UPDATEBATCHSIZE(k)
2: vk−1

i ← xk−1
i /tk−1

i , i=1, 2, ..., n.

3: vki = Fi(v
k−1
i , ..., vk−dv

i , cki, ...,c
k−dc
i ,mk

i, ...,m
k−dm
i),

i=1, ..., n.
4: X ←

∑n
i=1 x

k−1
i

5: xki =
vk
i∑n

j=1 vk
j

·X , i = 1, 2, ..., n.

6: round xki (i = 1, ..., n) to integers with
∑n

i=1 x
k
i = X .

7: return {xki }

(1) Non-negligible Communication Time: tp 6� tm

(t 6≈ tp). Computations on GPU workers are usually or-
ders of magnitude faster than CPU workers. Therefore, the
communication time in each iteration is no longer negligible
when compared with the computation time [36].

(2) Non-negligible GPU Launching Overhead: Γ (0) > 0.
Fig. 4 shows the relationship4 Γ (·) between tp and x for
different GPU types. Even for a very small batch, we find
that the GPU computation time could still be considerable.
This is because a GPU needs to do a series of preparation
work [67] to process each batch (e.g., exchanging parameters
between GPU and CPU memory, launching processing ker-
nels), which incurs considerable time overhead regardless of
the batch size, and that overhead is particularly salient for
large models like Inception-V3. In particular, the existence
of GPU launching overhead confirms that sequential sample
processing is highly inefficient: it is unacceptable to sustain
such an overhead when processing each sample.

(3) GPU Saturation Effect: Γ (x) = C,∀x < xs. For
advanced GPUs like Tesla V100, the batch computation time
tp would be almost a constant if the sample batch is too
small (less than the saturation threshold xs) to saturate all
the processing kernels [68], [69]. Reducing batch size under
xs does not help to reduce the computation time and would
cause GPU underutilization.

(4) GPU Memory Limitation: x < xo. During each
training iteration, the input sample batch, model parameters
and intermediate results shall all reside in GPU memory.
Therefore, the GPU memory size imposes a limit xo on
the maximum batch size (as marked in the legends of
Fig. 4), which, to avoid OOM (out-of-memory) error, must
be complied with when adjusting the batch size of a GPU
worker.

Challenges for LB-BSP in GPU clusters. The challenges for
realizing LB-BSP in GPU clusters are quite different from
that in CPU clusters. First, fine-grained GPU sharing is quite
rare (due to the technical difficulty and overhead [70], [10]),
and auxiliary resources (e.g., CPU, memory, network con-
nectivity) provisioned in GPU clusters fluctuate less often
than in CPU clusters [10], [29], [11], [30], leaving it unnec-
essary to make real-time performance predictions for GPU
workers. Second, however, statically profiling the non-linear

4. To eliminate network interference, the curves in Fig. 4 are obtained
with a TensorFlow worker process and a collocated PS process.

7

0 300 600 900 1200
Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pu
ta

tio
n

Ti
m

e
(s

)
CifarNet [CIFAR-10]
K520 (xo :2750)
M60 (xo :5660)
V100 (xo :10900)

0 16 32 48 64
Batch Size

0

1

2

3

4

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Inception-V3 [ImageNet]
K80 (xo :116)
M60 (xo :71)
V100 (xo :152)

Fig. 4: The relationship between computation time and batch
size of different GPU types.

relationship Γ (·) incurs non-trivial programming and time
overhead, and is particularly inconvenient for shared GPU
clusters where the workers of a ML job may be migrated
from time to time. Third, Fig. 4 implies that batch processing
time increases monotonically with the batch size; meanwhile,
compared with the huge number of seconds-level short
iterations in the long training process, the occurrence of
job migration is much fewer, suggesting that the worker
performance is stable in most consecutive iterations.

Therefore, instead of analytically solving problem (3)
based on static profiling, for GPU clusters it is more ap-
propriate to employ a numerical approximation method.

3.3.2 A Drop-in Algorithm for LB-BSP in GPU Clusters

In this part, we devise a drop-in algorithm to iteratively
approximate the equilibrium where the gap among all the
workers’ batch processing time is minimized.

The whole batch size adjusting algorithm is elaborated
in Alg. 2. After each training iteration, we identify two GPU
workers: a leader—the GPU worker with the shortest batch
processing time, and a straggler—the GPU worker with the
longest batch processing time. If the leader has consecu-
tively preceded the straggler during an observation window
(observation window is introduced for robustness to non-
deterministic random variations), we respectively increase
(reduce) the leader (straggler)’s batch size by a certain amount
called step size. Note that any GPU worker with less than 5%
available memory would, to avoid OOM error, be excluded
from being identified as the leader. Moreover, if with Alg. 2
a worker’s batch size is to be reduced below 0, we should
restart the training process without that worker, and the
resultant setup is actually more efficient.

Moreover, to reduce resource wastage, the equilibrium
should be approached efficiently with minimum oscillation.
To this end, we introduce two phases: a fast-approach phase
and a fine-tune phase. Initially the algorithm enters the fast-
approach phase, where we set a relatively large step size and
short observation window; then, once oscillation—a former
leader now identified as a straggler or vice versa—is detected,
we switch to the fine-tune phase by reducing the step size
(e.g., to 1) and increasing the observation window size.

3.4 Addressing Inconsistent Batch Sizes under LB-BSP
By tuning the worker batch size with Alg. 1 and Alg. 2,
we can effectively eliminate deterministic stragglers and
achieve high hardware efficiency. Yet, the resultant batch

Algorithm 2 Batch Size Updating in GPU Clusters

Input: {xk−1
i }, {tk−1

i }, {mk
i } . last batch size, last batch processing

time & current GPU memory usage of all workers (i=1, ..., n)

Require: past values of {ti}, i = 1, 2, ...n;
∆←5, D←5 . ∆: step size; D: observation window size

1: procedure GPU UPDATEBATCHSIZE(k)
2: leader← arg mini{tk−1

i | mk
i ≤ 0.95}

3: straggler← arg maxi{tk−1
i }

4: xki ← xk−1
i , i = 1, 2, ..., n

5: if xk−1
straggler ≤ ∆ then

6: return {xki } . print warning: remove this straggler!
7: if ∀h ∈ {k −D, ..., k − 1}, thleader < thstraggler then
8: xkleader ← xk−1

leader +∆ ; xkstraggler ← xk−1
straggler −∆

9: else if ∃h ∈ {1, ..., k − 1}, thleader > thstraggler then
10: ∆← 1, D ← 20 . switch to fine-tune phase

return {xki }

sizes on different workers would be inconsistent, which may
affect the statistical efficiency. In this part, we first elaborate
that problem and then give our solution.

Problem of Naive Aggregation under LB-BSP. Under BSP,
the aggregated global gradient g for parameter updating is
the naive average of the gradients from all the workers. Sup-
pose there are n workers and gi is the gradient calculated
on worker-i (i=1, 2, ..., n), then

g =
1

n

n∑
i=1

gi, where gi =
1

|Bi|
∑
s∈Bi

∇l(s, ω). (5)

Here Bi is the batch on worker-i. Getting rid of gi, we have

g =
1

n

n∑
i=1

1

|Bi|
∑
s∈Bi

∇l(s, ω) =
n∑

i=1

∑
s∈Bi

1

n|Bi|
·∇l(s, ω).

(6)
This implies that, when workers have different batch sizes
(|Bi|), the significance of different samples, i.e., 1

n|Bi| , is also
different. Thus g is biased to samples in small batches,
which may harm the statistical efficiency. To verify that,
we train the Inception-V3 model under Alg. 2 in a 16-node
heterogeneous GPU cluster (i.e., Cluster-A in §5.1). After
traversing the ImageNet dataset for 20 epochs, the training
accuracy only reaches 43%, much worse than that under BSP
(59%).

Weighted Gradient Aggregation. To avoid biased gradient,
we propose weighted gradient aggregation—using a worker’s
batch size as the weight when aggregating gradients. Sup-
pose the total batch size is

∑n
j=1 |Bj |=X , then we have

g =
1∑n

j=1 |Bj |

n∑
i=1

|Bi| · gi =
n∑

i=1

∑
s∈Bi

1

X
· ∇l(s, ω). (7)

Obviously, now each sample plays an equal role in param-
eters updating, regardless of the batch size inconsistency.
After that fix, for i.i.d. dataset, i.e., samples being indepen-
dent and identically distributed, LB-BSP can achieve identical
statistical efficiency with BSP, which is known to be optimal.

3.5 LB-BSP for Cross-Silo Federated Learning
So far, we focus on scenarios that the ML practitioners have
full control over the training datasets. However, in many

8

real-world scenarios, training samples are privacy-sensitive
and dispersed on distributed clients like cellphones, banks
and hospitals. To train models without centralizing such
private data, an increasingly popular technique is federated
learning (FL) [32], [33], [45], [71], [34], under which clients
can compute model updates locally and have the updated
models periodically synchronized on a central server.

Depending on the use cases, FL setups can be broadly
classified into cross-device FL [32], [45], [71] and cross-silo
FL [33], [34]. In the cross-device setting, clients are a large
number of mobile or IoT devices with limited computing
power and unreliable communications [45]. In contrast,
clients in cross-silo setting are a small number of organi-
zations with reliable communications and computing re-
sources [33]. Model synchronization is very expensive in
both setups. For cross-silo FL where the link bandwidth
is usually large, since it has much more rigid privacy re-
quirements (e.g., even the server cannot access the model
parameters), the model updates must be carefully encrypted
(decrypted) before (after) transmission; a typical encryption
method is Homomorphic Encryption (HE) [72], which is
very time-consuming (inflates the synchronization overhead
by about two orders of magnitude [33]). Therefore, for better
efficiency, a common training algorithm adopted for FL is
FedAvg [32], which dictates each client to iterate for multiple
times before conducting one global synchronization. More
specifically, when specifying the load in each round (one
round corresponds to one synchronization), under FedAvg
there are two hyper-parameters5: τ and B. Here τ is the
number of local iterations, and B is the batch size.

As elaborated in §2.1, the FL setup is a typical non-
dedicated scenario where faster clients would be slowed
down by the straggling ones. This is more of a problem
for cross-silo FL. In cross-device FL, there are usually a
vast number of clients (e.g., cellphones) that dynamically
join or leave the FL process. It is thus very hard, if not
impossible, to keep the execution status of each client. And
in fact, given client abundance, waiting for updates of all the
clients is unnecessary under state-of-the-art cross-device FL
systems [45]. In contrast, in cross-silo FL the participating
clients are limited and long-living, making it necessary and
also feasible to mitigate the stragglers within. Therefore, our
LB-BSP design in this part focuses on cross-silo FL.

Challenges for LB-BSP in cross-silo FL. Compared with
in shared CPU clusters (§3.2), client resources for cross-silo
FL are usually much more stable [33], making the NARX
prediction method no longer necessary. With a simple EMA
method, we can easily sense the client processing capability6

and obtain their load tuning scale in a way similar to §3.2.
Nonetheless, under the distinct FedAvg algorithm where
both τ and B determine the per-round load of a client,
a first question for our LB-BSP design is how to enforce

5. An equivalent representation form of τ is E—the number of train-
ing pases each client makes over its local dataset in each round [32].
Given the local dataset size d, we have E ∗ d = τ ∗B.

6. In cross-silo FL, the synchronization overhead is mainly incurred
by encryption/decryption, and the performance bottleneck lies mostly
in computation instead of pure communication [33].Thus, for simplicity
we skip the pure communication time here as in §3.2. If in some
extreme cases the communication time needs to be considered, we can
explicitly measure it and extend the load-tuning algorithm in LB-BSP
to counteract any client inconsistency in such communication time.

Algorithm 3 LB-BSP Workflow

Worker: i=1, 2, ..., n:
1: procedure WORKERITERATE(k)
2: xi←BatchSizeManager.UpdateBatchSize(<states>)

. blocking in CPU clusters and non-blocking in GPU clusters
3: load the next data batch Bk

i such that |Bk
i | = xi

4: pull wk from PS
5: calculate local gradient gki
6: push ḡki ← nxi

X
gki to PS . ḡki : weighted gradient

Parameter Server (PS):
1: procedure PARAMETERSERVERITERATE(k)
2: aggregate gradient gk ← 1

n

∑n
i=1 ḡ

k
i = 1

X

∑n
i=1 |B

k
i |gki

3: update parameters wk+1 ← wk − ηgk . η: learning rate

BatchSizeManager:
1: procedure UPDATEBATCHSIZE(<states>)
2: Refer to Alg. 1 (CPU cluster) or Alg. 2 (GPU cluster).

load scaling—on τ or B? And the second question is, since
under privacy constraint the local datasets on different FL
clients are non-i.i.d. and cannot be migrated, how to ensure
convergence validity after load tuning?

Regarding the first question, we propose to enforce load
scaling by tuning B instead of τ . Essentially, by introducing
τ , the FedAvg algorithm allows each client to proceed in its
local optimal direction (which is different among clients due
to non-i.i.d. datasets) for multiple steps in each round. If we
adjust τ based on client processing speed, then the faster
clients can proceed for more steps and make the aggregated
updates biased. Therefore, we choose to preserve τ and have
the load tuning enforced by B.

Regarding the second question, we first learn that
weighted gradient aggregation (WGA) is no longer ap-
propriate for FL. A basic assumption of WGA is that the
datasets are i.i.d. or can be migrated (so that each sample as
well as each sample class can play an equal role in model
refining, as explained in §3.4), which does not hold for FL.
If we adopt WGA and scale the learning rate η based on B,
then since faster clients process more samples in each round,
their local datasets gain a bigger say in model training.
Therefore, for FL scenarios, it is more important to ensure
that each local dataset instead of each individual sample is
equally treated, and we shall thus preserve the learning rate
η on each client regardless their batch size B. Since samples
on each client can be shuffled locally, the expected gradient
from each sample batch stays the same even with a different
batch size. This way, we can in fact prevent clients from
cheating by making faster computations.

To summarize, to realize LB-BSP for cross-silo FL, we
scale B in a similar way as in shared CPU clusters (except
that we adopt EMA instead of NARX as the prediction
method), with the learning rate η on each client preserved.
We will evaluate such design in our EC2 experiments (§5.5).

9

4 IMPLEMENTATION

We implement LB-BSP in BatchSizeManager7, a Python
module that can be integrated into various ML frameworks,
including TensorFlow [8], PyTorch [26] and MXNet [25].

Architecture Overview. The overall workflow of LB-BSP is
described in Alg. 3 and Fig. 5. In the beginning of iteration
k, each worker pushes its latest execution information (〈
batch processing time tk−1, CPU usage ck, memory usage
mk 〉 for CPU clusters, or 〈tk−1, mk〉 for GPU clusters) to
the BatchSizeManager, and then pulls back the updated
batch size xk. Note that LB-BSP is also applicable if the
gradients are aggregated with the All-Reduce architecture.

In particular, for CPU clusters the batch size updating
process is blocking so that the BatchSizeManager can get
the latest state information for speed prediction; yet for GPU
clusters, it is non-blocking because GPU workers’ state is
more stable (§3.3), and non-blocking interaction can avoid
prolonging the very short GPU iterations. To that end, on
each GPU worker we launch a separate thread to update
batch size in the background.

Enabling Variable Batch Size. In existing ML frameworks,
batch size is set as a constant when defining the computation
graph, with no direct APIs to configure it during the training
process. To enable variable batch size, in TensorFlow we de-
couple the batch size from the symbolic dataflow graph, and
specify it as a tensor value passed to TensorFlow session
through the feed_dict API. For MXNet and PyTorch, we
respectively customize the DataIter and BatchSampler
so that they can accept a user-specified batch size at runtime
and generate a corresponded sample batch.

Measuring Worker Execution Status. To implement LB-BSP,
at the worker side, we need to obtain the batch processing
time t and state information (e.g., CPU or memory usage).
Acquiring t is easy in dynamic-graph based frameworks like
PyTorch, but is challenging for static-graph based frame-
works like TensorFlow or MXNet. In TensorFlow, each iter-
ation (forward or backward propagation and synchroniza-
tion) is executed as a whole with tf.Session(), which
cannot be decomposed with simple instructions. We choose
to profile the batch processing time from the Timeline
log once each iteration finishes. Instead of respectively
measuring the communication time and computation time
which might overlap with each other, we directly calculate
batch processing time as the iteration time minus the synchro-
nization waiting time (i.e., duration of the sync_token_-
q_Dequeue operation). Besides, to measure the CPU or
memory usage we resort to the Python psutil [73] library,
and to measure the GPU memory usage we adopt the
tf.contrib.memory_stats.BytesInUse() operation.

Thrift RPC Protocol. The BatchSizeManager can be lo-
cated in a dedicated machine or co-located with the PS
process on an existing server of the cluster. For efficient com-
munication between the BatchSizeManager and workers,
we employ Apache Thrift [74], a lightweight RPC protocol

7. While LB-BSP can be integrated into the engines of ML frame-
works, this would lose generality, mess the decoupled programming
logic of input and graph propagation modules, and also lose the
flexibility to switch to All-Reduce communication backend (Operations
in Alg. 1 and Alg. 2 are hard to be realized with All-Reduce semantics).

�t , c , m
����t , m �

1
k-1

1
k

worker-1worker-1

	

worker-1

(Logical) Parameter Server

g
����

1
k
 �

BatchSize
Manager

� x

1
k

k-1
1
k

1

1
k

k

-

Sample Input Stream

B k
1 � (|B |=)k

1 x1
k

Fig. 5: LB-BSP workflow in iteration k (the circled numbers
represent the execution order). The logical PS can be in
the form of distributed shards, or be replaced by the All-
Reduce architecture.

developed by Facebook, and we create a thread pool to serve
the worker requests in parallel.

Online NARX Training. The NARX models we use for
CPU clusters are written in Keras [75], a high-level neural
network API. Accurate NARX training requires collecting
enough samples, so we enable NARX prediction only after
the first 500 iterations. In practice we find that 500 samples
are enough for accurately training our NARX models, which
are quite simple (§3.2.2). Within the first 500 iterations, we
can use EMA or, if that training job is recurring, the past
NARX models trained in former runs. For fast convergence,
we initialize NARX models by model reusing [76]—with the
models trained even for other workers or ML jobs. Besides,
we also adopt early stopping [77] and in practice we found
that most training processes terminate within 10 steps.

5 EVALUATION

In this section we systematically evaluate the performance
of LB-BSP in non-dedicated clusters. We start with the
end-to-end (§5.1) and micro-benchmark (§5.2) evaluations
in GPU clusters. Then we resort to model training with
leftover resources in production CPU clusters (§5.3), with
a deep dive analysis of the NARX prediction approach
(§5.4). Further in §5.5 we demonstrate LB-BSP effectiveness
in cross-silo FL, and finally we evaluate the overhead of our
LB-BSP implementation in §5.6.

5.1 End-to-End Evaluations in GPU Cluster

Experimental Setup. As elaborated in §2.1, there do exist
some scenarios (e.g., due to budget limitation or fairness
policy) where model training has to be conducted in hetero-
geneous GPU clusters. To emulate such scenarios, we build
Cluster-A, a heterogeneous GPU cluster with 16 Amazon
EC2 instances: four p3.2xlarge instances (each with one
Tesla V100 GPU), four g3.4xlarge instances (each with
one Tesla M60 GPU), four p2.xlarge instances (each with
one Tesla K80 GPU), and four g2.2xlarge instances (each
with one GRID K520 GPU). The link bandwidth of each
GPU instance is over 10Gbps. On each instance we run a
worker process and a collocated PS shard under TensorFlow.

With Cluster-A, we train the CifarNet [66] and ResNet-
32 [78] model on CIFAR-10 dataset (which contains 32× 32
colored images of 10 classes, with 50K images for training
and 10K for testing), and Inception-V3 [79] model on Ima-
geNet dataset [80] (containing 1.28 million training images

10

CifarNet
(BSP:8:4ms)

ResNet-32
(BSP:0:02s)

Inception-v3
(BSP:0:23s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

-u
pd

at
e

Ti
m

e

0.72

0.54 0.56

0.98 0.99 0.99

0.80

0.63

0.46

ASP SSP LB-BSP

(a) Hardware Efficiency

CifarNet
(BSP:4:1£105)

ResNet-32
(BSP:5:3£104)

Inception-v3
(BSP:1:1£106)

0.0

1.0

2.0

3.0

4.0

5.0

N
or

m
al

iz
ed

 N
um

be
r o

f
U

pd
at

es
 to

 C
on

ve
rg

en
ce

1.29

4.76

1.91

1.06

2.05

1.251.02 0.97 0.99

ASP SSP LB-BSP

(b) Statistical Efficiency

CifarNet
(BSP:3:5£103s)

ResNet-32
(BSP:1:1£103s)

Inception-v3
(BSP:72:1h)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 C
on

ve
rg

en
ce

 T
im

e

0.98

2.56

1.071.04

2.03

1.24

0.82
0.61

0.46

ASP SSP LB-BSP

(c) Overall Convergence Efficiency

Fig. 6: Training efficiency under different worker coordination schemes in Cluster-A.

0 640 1280 1920 256075

80

85

90

95

V
al

id
at

io
n

A
cc

ur
ac

y
(%

) ResNet-32 [CIFAR-10]

BSP
ASP
SSP
LB-BSP

0 15 30 45 60
Epoch

0

20

40

60

80

To
p-

1
V

al
id

at
io

n
A

cc
ur

ac
y

(%
)

Inception-V3 [ImageNet]

BSP
ASP
SSP
LB-BSP

Fig. 7: Test accuracy against training epochs.

of 1000 classes). CifarNet is a small convolutional neural
network [66] designed for CIFAR-10 dataset; ResNet-32 [78]
is a middle-size neural network with residual connections
cross different layers, and Inception-V3 [79] is a large neural
network improved from GoogLeNet. For simplicity each
worker locally hosts a full dataset copy. The initial batch
size of each worker is set to 128 for CIFAR-10, and 32 for
ImageNet. The initial learning rate is set to 0.01.

The schemes evaluated in this part are BSP, ASP, SSP8

and LB-BSP, and we defer the comparisons with FlexRR
and redundant execution to CPU clusters9. We measure
the overall training efficiency as well as the hardware and
statistical efficiency. The results are summarized in Fig. 6,
where BSP is the baseline and all the values displayed are
normalized by that under BSP.

Hardware Efficiency. The metric we use for hardware ef-
ficiency is per-update time—the average time it takes for PS
to receive one gradient update. For BSP and LB-BSP, per-
update time is the average iteration time divided by the
number of workers. In Fig. 6a, LB-BSP remarkably outper-
forms BSP and SSP, and this is consistent with our analysis
in §2.2. Interestingly, LB-BSP is even 15% better than ASP in
hardware efficiency when training Inception-V3 —we will
explain that with micro-benchmark evaluations in §5.2.

Statistical Efficiency. Statistical efficiency is measured as the
number of updates required to reach the target accuracy.
We set different near-optimal accuracy targets for different

8. By default, TensorFlow does not support SSP. We implemented it
with a worker-coordinator module over the Thrift RPC protocol,
which enforces fast workers to wait if the slowest one is 5 iterations
behind.

9. We exclude FlexRR from GPU evaluations because it is not com-
patible with the tensor-based processing style of GPUs, and redundant
execution is also excluded because its behavior in heterogeneous GPU
clusters is trivial—always ignoring the most inferior GPU worker(s).

models: 0.80 for CifarNet, 0.86 for ResNet-32, and 0.65 for
Inception-V3. As shown in Fig. 6b, for each model under
LB-BSP, the number of updates required to reach the target
accuracy is almost identical with that under BSP. In contrast,
ASP and SSP require up to 4.76× and 2.05× 10 the number
of BSP to make that accuracy.

Moreover, ASP and SSP fall behind not only in the
convergence speed, but also in the the ultimate accuracy
attained. Fig. 7 shows the convergence curves of ResNet-32
and Inception-V3, where an epoch is a full pass of all the
samples in the CIFAR-10 or ImageNet dataset. For ResNet-
32, we find that the accuracy made by ASP or SSP gets stuck
below 0.88, while BSP and LB-BSP successfully make the
ideal accuracy of 0.92. Also, for Inception-V3, BSP and LB-
BSP already surpass ASP and SSP even for reaching a sub-
optimal accuracy target 0.6511.
Overall Convergence Efficiency. Fig. 6c shows the overall
time required to reach the target accuracy, where LB-BSP
surpasses the second best by up to 54%. Therefore, it’s
highly rewarding to employ LB-BSP in such heterogeneous
GPU clusters. We further train ResNet-32 in a 12-node GPU
cluster without the p3.2xlarge instances, and the iteration
speedup of LB-BSP over BSP reduces (from 37% in Fig. 6a)
to 28%. Thus, the more heterogeneous the cluster is, the
more necessary it is to adopt LB-BSP for load balancing.

5.2 Micro-benchmark Evaluations in GPU Clusters

5.2.1 LB-BSP Behavior Deep Dive
To further understand LB-BSP behavior from the micro
level, we scale down Cluster-A to contain only 4 GPU
instances each of a distinct type, and measure the instan-
taneous worker batch size and batch processing time when
training Inception-V3. As shown in Fig. 8, LB-BSP gradually
increases the batch size of the most powerful worker (i.e.,
the one with the Tesla V100 GPU), with the batch sizes
of the other workers correspondingly decreased. Finally an
equilibrium is reached where all the workers share almost
the same batch processing time. Note that after iteration 30,

10. Being a deep model with residual connections, ResNet-32 is
more sensitive to parameter staleness and the performance degradation
of ResNet-32 under ASP and SSP is more salient than CifarNet or
Inception-V3.

11. Inception-V3 is not trained to the ideal accuracy (78.8%) due
to our budget limitation. For reference an existing work [50] has
confirmed that BSP can yield a higher final accuracy than ASP even
in homogeneous clusters.

11

0 50 100 150 200 250
Iteration Number

0
16
32
48
64
80
96

B
at

ch
 S

iz
e

0 50 100 150 200 250
Iteration Number

1.0

1.5

2.0

2.5

3.0

3.5

B
at

ch
 P

ro
ce

ss
in

g
Ti

m
e

(s
)

Tesla V100
Tesla M60
Tesla K80
GRID K520

Fig. 8: Instantaneous batch size and batch processing time
of the four heterogeneous GPU workers under LB-BSP. At
iteration 30, Alg. 2 enters the fine-tune phase, and batch
sizes of the four workers stabilize at (89, 21, 12, 6). Later at
iteration 150, bandwidth of the M60 GPU worker is reduced
to emulate a migration-caused locality degradation, and the
four workers then enter a new equilibrium.

the LB-BSP algorithm (Alg. 2) enters the fine-tune phase,
where the batch sizes of the four workers gradually stabilize
at (89, 21, 12, 6).

Fig. 8 also helps to elaborate why LB-BSP can even
outperform ASP in hardware efficiency. By yielding 26
samples (from 32 to 6), the worker with K520 GPU has
its batch processing time reduced by nearly 2s; in contrast,
the worker with V100 GPU, after incorporating as many as
57 samples, only suffers an increase of 0.5s. Therefore, by
allowing advanced workers to process more samples and
achieve a higher utilization with negligible slowdown, LB-
BSP can reduce the average cost to process one sample and
improve the hardware efficiency12.

Furthermore, we evaluate LB-BSP applicability in shared
GPU clusters, and emulate the network variation caused by
locality degradation when conducting cross-machine(rack)
worker migration. In Fig. 8, at iteration 150 we bound the
bandwidth of the worker with M60 GPU to 2.5Gbps (from
EC2-provisioned 10Gbps, with the wondershaper [81]
tool). The LB-BSP algorithm learns that shortly and then
gradually adjusts workers’ batch size to reach another equi-
librium. This confirms that LB-BSP can work well in multi-
tenant GPU clusters with job migrations from time to time.

5.2.2 LB-BSP Behavior facing Oscillating Bandwidth

To further reveal LB-BSP effectiveness in shared GPU
clusters with periodically network variations, we build a
small cluster with oscillating network bandwidth. That
cluster contains 8 single-GPU workers: four g2.2xlarge
instances, two p2.xlarge instances, and two g3.4xlarge
instances. We train the ResNet-32 model on CIFAR-10
dataset, and for generality we switch to the MXNet frame-
work in this experiment and the initial batch size is 380.
Moreover, we select one g2.2x worker as the testee, and pe-
riodically rotate its link bandwidth (also with the wonder-
shaper tool) between abundance state (480Mbps) and deficit
state (160Mbps). For performance comparison between LB-
BSP and BSP, we record the testee’s instantaneous batch size
and the corresponded iteration time, as shown in Fig. 9.

12. This also holds for CifarNet and ResNet-32 in Fig. 6a, but their
iterations are shorter and the GPU random perturbations are more sig-
nificant, rendering ASP still better than LB-BSP in hardware efficiency.

0 300 600 900 1200 1500 18000
160
320
480
640

B
an

dw
id

th
(M
bp
s) Testee (g2.2xlarge)

0 300 600 900 1200 1500 1800
100

300

500

B
at

ch
 S

iz
e

(T
es

te
e) BSP LB-BSP

0 300 600 900 1200 1500 1800
Iteration Number

250
450
650

Ite
ra

tio
n

Ti
m

e
(m
s) BSP LB-BSP

Fig. 9: Instantaneous batch size and iteration time of the
testee-worker (g2.2xlarge) when oscillating its band-
width respectively under BSP and LB-BSP.

From Fig. 9, we can learn that LB-BSP outperforms BSP
in two aspects. First, facing the static hardware (GPU) het-
erogeneity, LB-BSP automatically sets each worker’s batch
size based on their computing capabilities: batch size of
the g2.2xlarge instance is reduced from 380 to 235 to
compensate for hardware deficiency. This brings a perfor-
mance improvement of around 27%. Second, facing the
dynamic resource variation (i.e., bandwidth oscillation of
the testee worker), LB-BSP can swiftly perceive the testee’s
prolonged batch processing time and adjust its batch size as
a remediation. After the testee’s bandwidth drops from 480
Mbps to 160Mbps, the iteration time under LB-BSP increases
by less than 3%. As a result, compared with BSP, LB-BSP
improves the hardware efficiency by over 41%.

5.3 End-to-End Evaluations in Shared CPU Cluster
As elaborated in §3.2, non-neural-network or not-so-urgent
models may be trained in non-dedicated CPU clusters. In
this part we systematically evaluate LB-BSP performance in
such CPU clusters.

Experimental Setup. We manually created Cluster-B, a
heterogeneous CPU cluster that emulates the shared pro-
duction environment where ML models are trained with
the dynamic leftover resources [27], [82], [40], [12].
Cluster-B is built based on a one-hour snapshot of Google
Trace [27]. That trace discloses the machine configurations
(CPU/Memory capacities in normalized form) of a produc-
tion cluster from Google, together with the information of all
the involved jobs/tasks during a selected month—including
their resource consumptions and start/end times.

More specifically, we scale down the totally 12,583 ma-
chines to 32 EC2 instances, with the former’s hardware
heterogeneity proportionally preserved—by accordingly select-
ing the instance types and the quantity of each type, as
summarized in Table 2. Meanwhile, resource dynamicity of
that Google cluster is also emulated: we randomly map each
instance to a machine in the Google cluster, and launch a
set of faked tasks sharing identical behaviors (i.e., start/end
times & CPU/memory consumptions) with those submitted
to that Google machine.

Regarding the models, we train SVM on a malicious URL
dataset [83], and ResNet-32 on CIFAR-10 dataset. The batch
size for SVM training is 10% of the whole URL dataset (as
in [54]), and is 128 for ResNet-32.

The schemes evaluated are Redundant Execution (R-E),
SSP, LB-BSP and FlexRR. The first three schemes are imple-

12

Instance
Type

CPU, Mem
(core, GiB) Num

m4.2xlarge (8, 32) 17
c5.2xlarge (8, 16) 10
r4.2xlarge (8, 61) 2
m4.4xlarge (16, 64) 2
m4.xlarge (4, 16) 1

TABLE 2: Cluster-B composition.

SVM
(BSP:0:18s)

ResNet-32
(BSP:1:21s)

0.0

0.5

1.0

A
vg

. I
te

ra
tio

n
Ti

m
e

(N
or

m
al

iz
ed

 b
y

B
SP

)

0.86 0.890.82 0.78
0.62 0.56

0.38 0.42

R-E(2)
SSP

FlexRR
LB-BSP

Fig. 10: Iteration time with different
schemes in Cluster-B.

1200 1220 1240 1260 1280 1300
Iteration

60

70

80

90

100

Sa
m

pl
e

Pr
oc

es
si

ng
 S

pe
ed

(s
am

pl
es

/s
)

ResNet-32 [CIFAR-10]
Actual
Predicted

Fig. 11: NARX prediction result on an
m4.2xlarge instance.

mented in TensorFlow. For R-E, we add two c5.2xlarge
instances (also in resource contention with some faked
tasks) to Cluster-B as the backup worker, and only collect
32 gradients returned the earliest in each iteration. R-E is
supported in TensorFlow with the replicas_to_aggre-
gate parameter. In SSP, the bound of iteration gap is still
set to 5, as in §5.1. Regarding FlexRR, since it is not open-
sourced and its sequential sample processing manner is not
supported in current ML frameworks (§2.2.3), we choose
to emulate it in PyTorch. We generate tiny batches each
containing only one sample, and then encapsulate them
into logical batches of designated size; such a logical batch
can then be processed in a sequential manner. Meanwhile,
each worker’s helper group is set to be all the remaining
workers, and for the other setups (e.g., progress check fre-
quency, trigger condition of load reassignment), we follow
the suggested values in [23].

Hardware Efficiency. Fig. 10 shows the average iteration
time when training SVM and ResNet-32 under different
schemes in Cluster-B. For fair comparison, each value in
Fig. 10 is normalized by the BSP performance in the cor-
responded framework (sequential-processing-style PyTorch
for FlexRR, and TensorFlow for the others). As in Fig. 10, R-E
and SSP speed up the training iterations only marginally, be-
cause they focus on either worst-case or transient stragglers,
but the stragglers in Cluster-B span a wide range of degrees
and durations. Meanwhile, regarding FlexRR, its perfor-
mance is better but not the best, because its decentralized
load balancing decisions are not optimal, and meanwhile it
suffers non-negligible measurement, negotiation and load
reassignment overheads (§2.2.3). In contrast, LB-BSP can
bring a speedup of 62% for SVM and 58% for ResNet-32
over BSP, outperforming the second best (FlexRR) by up to
38.7%. Thus, given that LB-BSP can also make the optimal
statistical efficiency (§5.1), it can surely lead to the best
convergence efficiency among all the schemes evaluated.

5.4 Micro-benchmark Evaluations in CPU Clusters
In this part, we first evaluate the prediction performance
of the NARX model (§3.2.2) we use in Cluster-B, and then
compare LB-BSP performance in clusters with different het-
erogeneity levels.

5.4.1 NARX Performance Deep Dive

Visual Analysis. To get a visual understanding of the NARX
prediction performance, we randomly select a period (itera-
tion 1200∼1300) from the ResNet-32 training process on one
m4.2xlarge instance of Cluster-B; the actual and predicted

Method Configuration RMSE Avg. Iteration Time
(Normalized by BSP)

Memoryless - 11.85 0.58
EMA α=0.2 7.85 0.48
ARIMA (p,d,q)=(2,2,1) 9.67 0.52
SimpleRNN look-back=2 8.34 0.49
LSTM look-back=2 9.19 0.51
NARX look-back=2 4.78 0.42

TABLE 3: RMSE and iteration speedup when applying dif-
ferent prediction approaches in LB-BSP.

sample processing speeds are presented in Fig. 11. From it
we observe that the benefit of NARX is twofold. On the
one hand, NARX is robust to non-deterministic transient
perturbations: when there are “spikes” (like the sharp wave
around iteration 1206) in the actual speed curve, the pre-
dicted curve fluctuates much less. This is because NARX
predicts also with the worker’s available memory and CPU
amounts, which are relatively stable during those “spikes”.
On the other hand, when the actual speed increases not for
randomness but for non-transient deterministic factors like
increased CPU or memory resources (e.g., around iteration
1270), the predicted speed can promptly catch up.

Comparison with Other Approaches. We further compare
NARX with other approaches surveyed in §3.2.2, as listed in
Table 3. The memoryless method means to take last iteration’s
sample processing speed as the predicted one. Regarding
the EMA approach, the smoothing factor α (weight of the
latest observation) is set to be 0.2. As for the statistical
prediction approach—ARIMA, its order of the autoregressive
model (p), degree of differencing (d), and order of the moving
average (q) are respectively set to 2, 2 and 1, based on the
model selection techniques [84]. Finally, for SimpleRNN
(plain RNN) and LSTM, their look-back window size is set
to 2, the same as in NARX.

Then, we replace the NARX approach with those candi-
date prediction approaches, and re-train ResNet-32 model
under LB-BSP in Cluster-B. For each approach, we record
the average root-mean-square error (RMSE) of the prediction
results and the corresponded iteration time (normalized by
the iteration time under BSP). From Table 3, the NARX ap-
proach, with the ability to perceive CPU/memory resource
variations, attains the best performance—it surpasses the
second best by around 40% in RMSE and 15% in average
iteration time.

5.4.2 LB-BSP with Different Straggler Extents

To further evaluate LB-BSP under different heterogeneity
extents, we build another CPU cluster with competing pro-

13

Homo Hetero-L2 Hetero-L30

50

100

150

200
Pe

r-
up

da
te

 T
im

e
(m

s)
ResNet-32 [CIFAR-10]

BSP
ASP

SSP
LB-BSP

(a) Hardware Efficiency
Homo Hetero-L2 Hetero-L316

24

32

40

48

56

N
um

be
r

of
 U

pd
at

es

ResNet-32 [CIFAR-10]
×104

BSP
ASP

SSP
LB-BSP

(b) Statistical Efficiency
Homo Hetero-L2 Hetero-L30.0

1.2

2.4

3.6

4.8

6.0

To
ta

l R
un

 T
im

e
(s

)

ResNet-32 [CIFAR-10]
×104

BSP
ASP

SSP
LB-BSP

(c) Convergence Time

Fig. 12: Efficiency when training ResNet-32 under different straggler extents.

cesses injected at controlled levels.
Experimental Setup. We first build a homogeneous CPU
cluster containing 32 workers, where each worker is a
c5.2xlarge instance with 8 CPU cores and 16GB memory.
Then we inject artificial stragglers by running on each
worker a competing process; that process consumes desig-
nated cpu cycles and memory space. In particular, to em-
ulate resource dynamicity, we make that competing process
periodically run or sleep with certain probability; to emulate
resource heterogeneity, in different workers that probability
and the resource consumption of the competing process are
different. By tunning those configurations, we create three
heterogeneity levels: Homo—no stragglers at all; Hetero-L2
(L3)—sample processing speed of the slowest worker is
roughly 1/2 (1/3) of the fastest one.

Efficiency Comparison. Fig. 12 shows the performance
under different synchronization schemes when training
ResNet-32 model on CIFAR-10 dataset. We repeat each
training process for 3 times, and report min/max value
of each metric via error bars. As revealed by Fig. 12, LB-
BSP is the best one among all the schemes, its superiority
increasing with the level of heterogeneity. More specifically,
in each case, LB-BSP requires the same number of updates
for convergence as BSP, and meanwhile shares similar av-
erage iteration time with ASP (gap < 5%). This indicates
that LB-BSP attains the best statistical efficiency and near-
optimal hardware efficiency. From Fig. 12c, at Hetero-L3, LB-
BSP outperforms the other schemes by more than 30%.

5.5 Evaluations in Cross-Silo Federated Learning
Note that in §3.5 we propose our LB-BSP design for cross-
silo FL scenarios, withB tuned but learning rate η preserved
at its heart. In this part we then evaluate its effectiveness.

Experimental Setup. We set up a 5-client cluster on Ama-
zon EC2 to conduct cross-silo FL, with one m4.4xlarge
instance, one c4.2xlarge instance, one c5.2xlarge in-
stance, one c4.xlarge instance and one c5.xlarge in-
stance. The server is a c5.4xlarge instance. The models
we train in this cluster are LeNet-5 [85]—a 7- layer simple
convolutional neural network suitable for FL scenarios, and
a LSTM model with two recurrent layers. The LeNet-5
model is trained on the CIFAR-10 dataset and the LSTM
model is trained on KWS dataset—a subset of the Speech
Commands Dataset [86] with 10 keywords. As an indicator
of the worst case, in our setup the training datasets are

0 2 4 6 8 10
Training Time (£103 s)

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

LeNet-5 [CIFAR-10]

Standard FL
FL w/ adaptive ¿
FL w/ adaptive B & ´
FL w/ LB-BSP (adaptive B)

0 4 8 12 16 20
Training Time (£103 s)

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

LSTM [KWS]

Standard FL
FL w/ adaptive ¿
FL w/ adaptive B & ´
FL w/ LB-BSP (adaptive B)

Fig. 13: Test accuracy curves for LeNet-5 and LSTM in cross-
silo FL. Our LB-BSP design (with batch size B adaptively
adjusted and learning rate η preserved) can remarkably
speed up model convergence with accuracy preserved.

extremely non-i.i.d. across different clients: we partition the
CIFAR-10 or KWS dataset based on the sample labels and
have each client host exactly two sample classes. The default
values of the local iteration number (τ), batch size (B) and
learning rate (η) are 500, 100 and 0.01, respectively.

Efficiency Comparison. With the above setup, we measure
the FL training efficiency with and without LB-BSP. Under
standard FedAvg algorithm with identical τ , B and η on
each client, faster clients would have to wait for slower
ones in each synchronization round. Execution results reveal
that, in average the fastest client (m4.4xlarge instance)
spends over one third of the per-round time waiting for
the slowest client (c5.xlarge instance). In contrast, by
adaptively tuning B, our LB-BSP design can remarkably
mitigate such resource wastage. Fig. 13 shows the best-ever
accuracy during each FL training process, which implies
that our LB-BSP design can largely speed up model con-
vergence with negligible accuracy loss. To be specific, for
LeNet-5, LB-BSP attains a speedup of over 27%, and by
preserving η, it makes a near-optimal accuracy performance
(0.42) as under standard FedAvg. In contrast, those LB-BSP
variants discussed in §3.5—one that tunes τ instead of B
and the other that tunes η proportionally with B—both fail
to make such an accuracy, because under those schemes
the significance of different dataset partitions (i.e., different
sample classes) would be inconsistent.

5.6 System Overhead and Scalability

In TensorFlow, LB-BSP introduces two extra procedures:
first to extract batch processing time from execution

14

32-node 64-node 96-node0.0

0.2

0.4

0.6

0.8

1.0

1.2
%

 o
f

Ite
ra

tio
n

Ti
m

e
ResNet-32 [CIFAR-10]

Batch size updating
Log processing

32-node 64-node 96-node0.0

0.2

0.4

0.6

0.8

%
 o

f
Ite

ra
tio

n
Ti

m
e

Inception-V3 [ImageNet]

Batch size updating
Log processing

Fig. 14: LB-BSP overheads in CPU clusters.

logs (e.g., the Timeline object), and second to conduct
RPC communication between the BatchSizeManager and
workers. Yet, they won’t slow down GPU workers because
of our non-blocking design (§4), and here we measure the
slowdown caused by those two extra procedures in CPU
clusters.

We respectively train ResNet-32 and Inception-V3 model
for 1000 iterations in three CPU clusters—a homogeneous
cluster with 33 c5.2xlarge instances (32 worker nodes
and 1 separate node hosting both the PS and Batch-
SizeManager), and then its enlarged version with a dou-
bled/tripled number of workers. Fig. 14 shows the average
time respectively spent on log processing and batch size
updating, normalized by the iteration time (error bars show
the 5th/95th percentile). Even in the largest cluster with
96 workers, the total overheads are less than 1.1% of the
iteration time for both models. This indirectly confirms that,
performance of the PS is almost not affected by the co-
located BatchSizeManger.

6 ADDITIONAL RELATED WORK

In addition to §2.2, in this section we introduce some other
works related to this paper. We first review the research
works on data batching, and then discuss the efficiency
optimization methods on other aspects.

Batching is necessary when processing long-lasting
streaming inputs or training models with large datasets.
For big data streaming systems [87], [88], some works [89],
[90] have explored how to adaptively adjust the batching
interval when faced with dynamic data rates or operating
conditions. For iterative model training, some [91], [92] have
proposed to adaptively increase batch size during the train-
ing process to yield faster convergence. Yet, those works
don’t involve workload allocation among parallel workers,
and are thus orthogonal to LB-BSP.

Meanwhile, it is recently a very hot research topic to
enhance the training efficiency of distributed ML. While
our focus is straggler elimination, on efficiency enhance-
ment there are some other research branches, and a well-
known one is improving the communication efficiency. In
the literature, communication efficiency can be improved
by pipelining the layer-wise parameter transmissions [36],
[93] and by optimizing the transmission order of different
workers or different parameter groups [94], [14]. Some other
works instead proposed to compress the communication
content by quantization—reducing the bandwidth consump-
tion by transferring the low-precision gradients [95], [96],
or by sparsification—sending only a portion of the updates
that are significantly enough [97], [98]. Additionally, for FL

scenarios, the training efficiency can also be enhanced by
adaptively tuning the synchronization frequency [99], [100].
Those approaches can be adopted together with our LB-BSP
scheme.

7 DISCUSSIONS

Data Access Frequency. Note that in this paper we focus on
cases where each worker can access the entire dataset, via ei-
ther local storage or Network File System (NFS) [101], [102],
[103]. In shared production clusters, it has become almost a
norm to store data in NFS (the access delay can be made neg-
ligible via prefetching), which largely facilitates data man-
agement and job migration [12], [10], [11], [30]. Nonetheless,
there may still exist some cases that each worker can only
access a local partition of the training dataset. Under LB-BSP
where faster workers iterate with larger batches, this means
that samples on faster workers would be accessed more
frequently. Such a problem of uneven sample access frequency
may lead to inaccurate training results, especially when the
dataset is not well shuffled before being partitioned and
there are huge gaps on worker processing capability. To
address uneven sample access frequency with transparency
to the upper level training process, we suggest an iterative
SSP-style data scheduling scheme: once the traversal times
of one partition exceed another over a given threshold, we
launch a background process to migrate certain amount
of samples from the slower worker to the faster one. We
have prototyped13 this method atop PyTorch, and verified
that it could make ideal accuracy even under non-i.i.d. data
distribution. Such a kind of data migration method is indeed
light-weight in GPU clusters, because in GPU clusters the
worker speed is relatively stable and data migration is done-
once-and-working-forever, with the overhead amortized.

ASIC Hardware. While in this work LB-BSP is designed
mainly for CPU and GPU clusters, it can also be adopted for
ASIC (Application Specific Integrated Circuit) hardware like
TPU or FPGA. Existing measurements in the literature [104],
[105] have shown that TPU and FPGA also exhibit a
non-linear, monotonically-increasing relationship between the
batch computation time and batch size, identical with that of
a GPU (as shown in Fig. 4). Therefore, our LB-BSP algorithm
for GPU clusters, i.e., Alg. 2, should be able to work well in
heterogeneous clusters with such ASIC hardware.

Semi-Dynamic Load Balancing with ASP or SSP. Although
LB-BSP is built atop BSP, its basic philosophy, semi-dynamic
load balancing, can also be integrated into ASP and SSP to
avoid stale parameters. Nonetheless, under ASP or SSP each
worker would proceed without per-iteration barriers, and it
is thus hard to simultaneously and coordinately adjust each
worker’s batch size, leading to a larger overhead and worse
load-balancing effect.

13. We develop a Python module called DataPartitionManager
to periodically collect each partition’s traversal status and launch peer-
to-peer data transmission when appropriate, where all the communi-
cations are in Thrift RPC calls. Once a data shifting process finishes,
we reset the input stream (e.g., DataLoader in PyTorch) and partition-
traversal statistics on all the workers. In our verification, we train the
ResNet-32 model with 5 workers; each worker hosts two classes of
the CIFAR-10 dataset and their batch sizes are 64, 96, 128, 160 and
192, respectively. With the DataPartitionManager and the gap of
traversal times bounded by 2, we obtain the same test accuracy (0.92)
as training with i.i.d dataset.

15

End-of-iteration Network Contention. Since LB-BSP can
equalize ML workers’ batch processing time, this would
however intensify the network contention at the iteration
boundaries. In scenarios where the network bandwidth is
a severe bottleneck, it is highly suggested that LB-BSP is
adopted along with certain communication optimization
techniques as elaborated in §6.

8 CONCLUDING REMARKS

In this work, we find that machine learning workloads
should be load-balanced in a semi-dynamic manner, and
have proposed LB-BSP to achieve efficient distributed learn-
ing with non-dedicated resources. LB-BSP works by spec-
ulatively apportioning the load on each worker based on
its temporal processing capability. We have designed LB-
BSP respectively for CPU clusters, GPU clusters and FL
setups. Our testbed experiments show clear evidence that
LB-BSP can effectively eliminate stragglers in non-dedicated
clusters, speeding up model convergence by over 50%.

ACKNOWLEDGMENT

The research was supported in part by RGC GRF grants un-
der the contracts 16206417, 16207818 and 26213818. Qizhen
Weng was supported in part by the Hong Kong PhD Fel-
lowship Scheme.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012.

[2] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning
hierarchical features for scene labeling,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 8, pp. 1915–1929, 2013.

[3] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. Kuksa, “Natural language processing (almost) from
scratch,” J. Mach. Learn. Res., vol. 12, no. Aug, pp. 2493–2537,
2011.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in NIPS, 2014.

[5] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Ng, “Large scale
distributed deep networks,” in NIPS, 2012.

[6] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server,” in USENIX OSDI,
2014.

[7] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training
system,” in USENIX OSDI, 2014.

[8] M. Abadi et al., “Tensorflow: A system for large-scale machine
learning,” in USENIX OSDI, 2016.

[9] “EC2 Spot Instances,” https://aws.amazon.com/ec2/spot/,
2020.

[10] M. Jeon, S. Venkataraman, J. Qian, A. Phanishayee, W. Xiao, and
F. Yang, “Multi-tenant gpu clusters for deep learning workloads:
Analysis and implications,” MSR Technical Report 2018-13, 2018.

[11] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra,
Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva:
introspective cluster scheduling for deep learning,” in USENIX
OSDI, 2018.

[12] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhul-
gakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine
learning at facebook: A datacenter infrastructure perspective,” in
IEEE HPCA, 2018.

[13] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ml
via a stale synchronous parallel parameter server,” in NIPS, 2013.

[14] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai,
G. R. Ganger, P. B. Gibbons et al., “Exploiting bounded staleness
to speed up big data analytics,” in USENIX ATC, 2014.

[15] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” JACM, vol. 46, no. 5, pp. 720–
748, 1999.

[16] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha, “Scalable work stealing,” in IEEE/ACM SC, 2009.

[17] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing
tool,” Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[18] T. Kokilavani, D. D. G. Amalarethinam et al., “Load balanced
min-min algorithm for static meta-task scheduling in grid com-
puting,” International Journal of Computer Applications, vol. 20,
no. 2, pp. 43–49, 2011.

[19] P. Samal and P. Mishra, “Analysis of variants in round robin
algorithms for load balancing in cloud computing,” International
Journal of computer science and Information Technologies, vol. 4, no. 3,
pp. 416–419, 2013.

[20] X. Tang and S. T. Chanson, “Optimizing static job scheduling in
a network of heterogeneous computers,” in IEEE ICPP, 2000.

[21] J. Yang and Q. He, “Scheduling parallel computations by work
stealing: A survey,” International Journal of Parallel Programming,
vol. 46, no. 2, pp. 173–197, 2018.

[22] B. Acun and L. V. Kale, “Mitigating processor variation through
dynamic load balancing,” in IEEE IPDPSW, 2016.

[23] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons,
G. A. Gibson, and E. P. Xing, “Addressing the straggler problem
for iterative convergent parallel ml,” in ACM SoCC, 2016.

[24] U. A. Acar, A. Charguéraud, and M. Rainey, “Scheduling par-
allel programs by work stealing with private deques,” in ACM
SIGPLAN Notices, 2013.

[25] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv
preprint arXiv:1512.01274, 2015.

[26] “PyTorch,” https://pytorch.org/, 2020.
[27] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.

Kozuch, “Heterogeneity and dynamicity of clouds at scale:
Google trace analysis,” in ACM SoCC, 2012.

[28] E. Diaconescu, “The use of narx neural networks to predict
chaotic time series,” Wseas Transactions on computer research, vol. 3,
no. 3, pp. 182–191, 2008.

[29] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an
efficient dynamic resource scheduler for deep learning clusters,”
in ACM Eurosys, 2018.

[30] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A GPU cluster manager for distributed
deep learning,” in USENIX NSDI, 2019.

[31] C. Chen, Q. Weng, W. Wang, B. Li, and B. Li, “Semi-dynamic
load balancing: efficient distributed learning in non-dedicated
environments,” in Proceedings of the 11th ACM Symposium on
Cloud Computing, 2020, pp. 431–446.

[32] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving
communication efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[33] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learn-
ing,” in USENIX ATC, 2020.

[34] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[35] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch
training for stochastic optimization,” in ACM KDD, 2014.

[36] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication
architecture for distributed deep learning on gpu clusters,” in
USENIX ATC, 2017.

[37] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large
minibatch sgd: Training imagenet in 1 hour,” arXiv preprint
arXiv:1706.02677, 2017.

[38] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing,
“Geeps: Scalable deep learning on distributed gpus with a gpu-
specialized parameter server,” in ACM Eurosys, 2016.

[39] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie,
Z. Guo, Y. Yang, L. Yu et al., “Highly scalable deep learning

16

training system with mixed-precision: Training imagenet in four
minutes,” arXiv preprint arXiv:1807.11205, 2018.

[40] T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang, “Ease. ml: towards
multi-tenant resource sharing for machine learning workloads,”
VLDB, 2018.

[41] J. H. Park, G. Yun, C. M. Yi, N. T. Nguyen, S. Lee, J. Choi,
S. H. Noh, and Y.-r. Choi, “Hetpipe: Enabling large dnn training
on (whimpy) heterogeneous gpu clusters through integration of
pipelined model parallelism and data parallelism,” in USENIX
ATC, 2020.

[42] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and
S. Viswanatha, “Balancing efficiency and fairness in heteroge-
neous GPU clusters for deep learning,” Proceedings of the Fifteenth
European Conference on Computer Systems, 2020.

[43] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and
efficient gpu cluster scheduling,” in NSDI, 2020.

[44] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee,
and M. Zaharia, “Heterogeneity-aware cluster scheduling poli-
cies for deep learning workloads,” in USENIX OSDI, 2020.

[45] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, H. B. McMahan,
and et al., “Towards federated learning at scale: System design,”
in MLSys, 2020.

[46] J. Langford, A. J. Smola, and M. Zinkevich, “Slow learners are
fast,” in NIPS, 2009.

[47] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica,
“Effective straggler mitigation: Attack of the clones.” in USENIX
NSDI, 2013.

[48] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments.” in USENIX OSDI, 2008.

[49] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in USENIX NSDI, 2012.

[50] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” arXiv preprint arXiv:1604.00981,
2016.

[51] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in ACM Multimedia, 2014.

[52] K. Al Nuaimi, N. Mohamed, M. Al Nuaimi, and J. Al-Jaroodi,
“A survey of load balancing in cloud computing: Challenges and
algorithms,” in IEEE NCA, 2012.

[53] A. N. Tantawi and D. Towsley, “Optimal static load balancing
in distributed computer systems,” Journal of the ACM (JACM),
vol. 32, no. 2, pp. 445–465, 1985.

[54] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware
distributed parameter servers,” in ACM SIGMOD, 2017.

[55] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-
driven scheduling for distributed machine learning,” in ACM
SoCC, 2017.

[56] T. Le, X. S. Sun, M. Chowdhury, and Z. Liu, “Allox: compute
allocation in hybrid clusters,” Proceedings of the Fifteenth European
Conference on Computer Systems, 2020.

[57] “Stress-ng: a tool to load and stress a computer sys-
tem,” http://manpages.ubuntu.com/manpages/artful/man1/
stress-ng.1.html, 2019.

[58] V. Ş. Ediger and S. Akar, “Arima forecasting of primary energy
demand by fuel in turkey,” Energy Policy, vol. 35, no. 3, pp. 1701–
1708, 2007.

[59] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural
networks and robust time series prediction,” IEEE Trans. on
Neural Networks, vol. 5, no. 2, pp. 240–254, 1994.

[60] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[61] A. M. Rather, A. Agarwal, and V. Sastry, “Recurrent neural
network and a hybrid model for prediction of stock returns,”
Expert Systems with Applications, vol. 42, no. 6, pp. 3234–3241,
2015.

[62] N. G. Polson and V. O. Sokolov, “Deep learning for short-term
traffic flow prediction,” Transportation Research Part C: Emerging
Technologies, vol. 79, pp. 1–17, 2017.

[63] Y. Gao and M. J. Er, “Narmax-model-based time series modeling
and prediction: feedforward and recurrent fuzzy neural network
approaches,” in WSEAS CSECS, 2003.

[64] D. Argyropoulos, D. S. Paraforos, R. Alex, H. W. Griepentrog,
and J. Müller, “Narx neural network modelling of mushroom
dynamic vapour sorption kinetics,” IFAC-PapersOnLine, vol. 49,
no. 16, pp. 305–310, 2016.

[65] E. Cadenas, W. Rivera, R. Campos-Amezcua, and R. Cadenas,
“Wind speed forecasting using the narx model, case: La mata,
oaxaca, méxico,” Neural Computing and Applications, vol. 27, no. 8,
pp. 2417–2428, 2016.

[66] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” Technical report, University of Toronto,
2009.

[67] D. Lustig and M. Martonosi, “Reducing gpu offload latency via
fine-grained cpu-gpu synchronization,” in IEEE HPCA, 2013.

[68] A. Magni, C. Dubach, and M. O’Boyle, “Exploiting gpu hardware
saturation for fast compiler optimization,” in ACM GPGPU, 2014.

[69] A. Li, “Gpu performance modeling and optimization,” Ph.D.
dissertation, Technische Universiteit Eindhoven, 2016.

[70] J. Gu, H. Liu, Y. Zhou, and X. Wang, “Deepprof: Performance
analysis for deep learning applications via mining gpu execution
patterns,” arXiv preprint arXiv:1707.03750, 2017.

[71] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated Learning: Strategies for Improving
Communication Efficiency,” arXiv:1610.05492 [cs], 2017.

[72] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and Q. Yang, “Secure-
boost: A lossless federated learning framework,” arXiv preprint
arXiv:1901.08755, 2019.

[73] “Python Psutil,” https://psutil.readthedocs.io/en/latest/, 2020.
[74] “Apache Thrift,” https://thrift.apache.org/, 2020.
[75] “Keras,” https://keras.io/, 2020.
[76] Y. Yang, D.-C. Zhan, Y. Fan, Y. Jiang, and Z.-H. Zhou, “Deep

learning for fixed model reuse.” in AAAI, 2017, pp. 2831–2837.
[77] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in

gradient descent learning,” Constructive Approximation, vol. 26,
no. 2, pp. 289–315, 2007.

[78] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE CVPR, 2016.

[79] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
IEEE CVPR, 2016.

[80] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[81] “Wonder Shaper,” https://github.com/magnific0/
wondershaper, 2020.

[82] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud
platforms,” 2017.

[83] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying
suspicious urls: an application of large-scale online learning,” in
ACM ICML, 2009.

[84] T. Ozaki, “On the order determination of arima models,” Applied
Statistics, pp. 290–301, 1977.

[85] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[86] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” arXiv preprint arXiv:1804.03209, 2018.

[87] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at
scale,” in ACM SOSP, 2013.

[88] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@
twitter,” in ACM SIGMOD, 2014.

[89] T. Das, Y. Zhong, I. Stoica, and S. Shenker, “Adaptive stream
processing using dynamic batch sizing,” in ACM SoCC, 2014.

[90] Q. Zhang, Y. Song, R. R. Routray, and W. Shi, “Adaptive block
and batch sizing for batched stream processing system,” in IEEE
ICAC, 2016.

[91] A. Devarakonda, M. Naumov, and M. Garland, “Adabatch:
Adaptive batch sizes for training deep neural networks,” arXiv
preprint arXiv:1712.02029, 2017.

[92] S. De, A. Yadav, D. Jacobs, and T. Goldstein, “Automated infer-
ence with adaptive batches,” in Artificial Intelligence and Statistics,
2017, pp. 1504–1513.

17

[93] S. Shi and X. Chu, “MG-WFBP: Efficient data communication
for distributed synchronous sgd algorithms,” in IEEE INFOCOM,
2019.

[94] C. Chen, W. Wang, and B. Li, “Round-Robin Synchronization:
Mitigating Communication Bottlenecks in Parameter Servers,” in
IEEE INFOCOM, 2019.

[95] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic
gradient descent and its application to data-parallel distributed
training of speech dnns,” in Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

[96] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic,
“QSGD: Communication-efficient SGD via gradient quantization
and encoding,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 1709–1720.

[97] N. Strom, “Scalable distributed dnn training using commodity
gpu cloud computing,” in Sixteenth Annual Conference of the
International Speech Communication Association, 2015.

[98] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine
learning approaching LAN speeds,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2017, pp.
629–647.

[99] J. Wang and G. Joshi, “Adaptive communication strategies to
achieve the best error-runtime trade-off in local-update sgd,” in
SysML, 2019.

[100] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained
edge computing systems,” Journal on Selected Areas in Communi-
cations, vol. 37, no. 6, pp. 1205–1221, 2019.

[101] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in IEEE MSST, 2010.

[102] “GlusterFS,” https://docs.gluster.org/en/latest/, 2020.
[103] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk file system

for large computing clusters.” in USENIX FAST, 2002.
[104] Y. Kochura, Y. Gordienko, V. Taran, N. Gordienko, A. Rokovyi,

O. Alienin, and S. Stirenko, “Batch size influence on performance
of graphic and tensor processing units during training and infer-
ence phases,” arXiv preprint arXiv:1812.11731, 2018.

[105] T. Posewsky and D. Ziener, “Throughput optimizations for fpga-
based deep neural network inference,” Microprocessors and Mi-
crosystems, vol. 60, pp. 151–161, 2018.

Chen Chen received the B.Eng. degree from
Tsinghua University in 2014, and the PhD de-
gree in 2018 from Department of Computer Sci-
ence and Engineering, Hong Kong University of
Science and Technology. His recent research
interests include distributed deep learning, big
data systems and networking. He now works as
a researcher at the Theory Lab, Huawei HK.

Qizhen Weng received the BEng (Hons.) de-
gree from the School of Information Security
Engineering at Shanghai Jiao Tong University
(SJTU) in 2017. Since then, as a recipient of
the Hong Kong Ph.D. Fellowship Award, he has
been working toward the PhD degree in the De-
partment of Computer Science and Engineering,
Hong Kong University of Science and Technol-
ogy (HKUST). He is broadly interested in cloud
computing and big data systems, with a spe-
cial focus on cluster management with machine

learning techniques.

Wei Wang (S’11-M’15) received the B.Eng.
(Hons.) and M.Eng. degrees from Shanghai Jiao
Tong University, and the Ph.D. degree from the
University of Toronto in 2015, all in the Depart-
ment of Electrical and Computer Engineering.
He is an Assistant Professor in the Department
of Computer Science and Engineering at the
Hong Kong University of Science and Technol-
ogy (HKUST). He is also affiliated with HKUST
Big Data Institute. His research interests cover
the broad area of distributed systems, with spe-

cial emphasis on big data and machine learning systems, cloud com-
puting, and computer networks in general. Dr. Wang was a recipient
of the Best Paper Runner-up Award at USENIX ICAC 2013. He was
recognized as the Distinguished TPC Member of IEEE INFOCOM 2018,
2019 and 2020.

Baochun Li received his B.Engr. degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 1995 and
his M.S. and Ph.D. degrees from the Department
of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, in 1997 and 2000.
Since 2000, he has been with the Department of
Electrical and Computer Engineering at the Uni-
versity of Toronto, where he is currently a Profes-
sor. He holds the Bell Canada Endowed Chair
in Computer Engineering since August 2005.

His research interests include cloud computing, distributed systems,
datacenter networking, and wireless systems. He was the recipient of
the IEEE Communications Society Leonard G. Abraham Award in the
Field of Communications Systems in 2000. In 2009, he was a recipient
of the Multimedia Communications Best Paper Award from the IEEE
Communications Society, and a recipient of the University of Toronto
McLean Award. He is a member of ACM and a Fellow of IEEE.

Bo Li is a Chair Professor in the Department
of Computer Science and Engineering, Hong
Kong University of Science and Technology. He
held a Cheung Kong Visiting Chair Professor
in Shanghai Jiao Tong University between 2010
and 2016, and was the Chief Technical Advisor
for ChinaCache Corp. (NASDAQ:CCIH), a lead-
ing CDN provider. He was an adjunct researcher
at the Microsoft Research Asia (MSRA) (1999-
2006) and at the Microsoft Advanced Technol-
ogy Center (2007-2008). He made pioneering

contributions in multimedia communications and the Internet video
broadcast, in particular Coolstreaming system, which was credited as
first large-scale Peer-to-Peer live video streaming system in the world.
It attracted significant attention from both industry and academia and
received the Test-of-Time Best Paper Award from IEEE INFOCOM
(2015). He has been an editor or a guest editor for over a two dozen
of IEEE and ACM journals and magazines. He was the Co-TPC Chair
for IEEE INFOCOM 2004.

He is a Fellow of IEEE. He received his PhD in the Electrical and
Computer Engineering from University of Massachusetts at Amherst,
and his B. Eng. (summa cum laude) in the Computer Science from
Tsinghua University, Beijing.

