
1

GIFT: Towards Accurate and Efficient Federated Learning with
Gradient-Instructed Frequency Tuning

Chen Chen, Member, IEEE, Hong Xu, Senior Member, IEEE, Wei Wang, Member, IEEE,
Baochun Li, Fellow, IEEE, Bo Li, Fellow, IEEE, Li Chen, Member, IEEE, and Gong Zhang, Member, IEEE

Abstract—Federated Learning (FL) enables distributed clients
to collectively train a global model without revealing their
private data, and for efficiency clients synchronize their gradients
periodically. However, this can lead to the inaccuracy in model
convergence due to inconsistent data distributions among clients.
In this work, we find that there is a strong correlation between
FL accuracy loss and the synchronization frequency, and seek
to fine tune the synchronization frequency at training runtime
to make FL accurate and also efficient. Specifically, aware that
under the FL privacy requirement only gradients can be utilized
for making frequency tuning decisions, we propose a novel
metric called gradient consistency, which can effectively reflect
the training status despite the instability of realistic FL scenarios.
We further devise a feedback-driven algorithm called Gradient-
Instructed Frequency Tuning (GIFT), which adaptively increases
or decreases the synchronization frequency based on the gradient
consistency metric. We have implemented GIFT in PyTorch, and
large-scale evaluations show that it can improve FL accuracy by
up to 10.7% with a time reduction of 58.1%.

Index Terms—Federated Learning, Synchronization Fre-
quency, Gradient Statistics

I. INTRODUCTION

Federated learning (FL) [1], [2] emerges as a popular
paradigm that allows edge clients to collaboratively train
models without sharing their local private data. In typical FL
scenarios, the hardware resources on edge devices—especially
the network bandwidth—are usually quite limited. To reduce
the overall training cost, the de facto FL mechanism is FedAvg,
under which each client trains with its local dataset for multiple
iterations before performing a synchronization.

A well-known challenge for FL is that the local datasets
on clients are not identically and independently distributed
(i.e., being non-IID). Recent works have empirically shown
that, FL with non-IID datasets would suffer remarkable accu-
racy loss [2]–[5], which correlates with the synchronization
frequency of FedAvg (also confirmed by us in §III). There is
thus a trade-off in setting up the FL synchronization frequency:
Less frequent synchronization can reduce the communication

Chen Chen is with the John Hopcroft Center for Computer Science,
Shanghai Jiao Tong University (email: chen-chen@sjtu.edu.cn).

Hong Xu is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong (email: hongxu@cuhk.edu.hk).

Wei Wang and Bo Li are with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology (email:
weiwa@cse.ust.hk; bli@cse.ust.hk).

Baochun Li is with the Department of Electrical and Computer Engineering,
University of Toronto (email: bli@ece.toronto.edu).

Li Chen is with the Zhongguancun Laboratory (email:
lichen@zgclab.edu.cn).

Gong Zhang is with the Theory Lab, Huawei Hong Kong Research Center
(email: nicholas.zhang@huawei.com).

cost, but in the meantime would compromise the accuracy
performance. To make FL accurate and also efficient, it is a
promising technique to dynamically adjust the synchronization
frequency during the training process.

Yet, it remains a largely-unexplored territory how to tune the
FL synchronization frequency at runtime: For FedAvg and its
cluster counterpart called local SGD [6]–[9], existing practices
either assume a fixed frequency (which may be either too
high or too low as training proceeds), or consider IID data
only. In particular, we note that the distinct FL characteristics
impose three challenges for the design of an ideal frequency
tuning strategy. First, privacy is a primary concern for FL,
meaning that the frequency tuning decisions shall be made
only with gradients, not requiring additional information like
client loss or accuracy. Second, that frequency tuning strategy
shall work smoothly when facing dynamic and massive client
participations in realistic FL systems. Third, since a FL
framework may be used for many machine learning models,
the frequency tuning strategy shall be generally effective, not
relying on any specific model characteristics (i.e., knowledge
of the convexity or smoothness constant).

To quickly recap, our objective in this work is to de-
sign a privacy-preserving, system-practical and model-generic
method to tune FL synchronization frequency at runtime. To
make that, we propose Gradient-Instructed Frequency Tuning
(GIFT)—a feedback-driven frequency tuning algorithm with
gradient-based feedback signal. GIFT is tailor-made respec-
tively for the three challenges aforementioned.

To be privacy-preserving, GIFT perceives the training sta-
tus based purely on gradients. To bridge the gap between
training performance and gradient behavior, we conduct both
theoretical and experimental analysis on the root cause of
accuracy degradation when training models with non-IID data.
We find that, when insufficient synchronization occurs with
inconsistent data distribution, the global model parameters
would stagnate prematurely at sub-optimal positions, where
the model gradients from different clients conflict with each
other, i.e., exhibiting a bifurcating trend. Therefore, through
the level of such gradient bifurcation, we can gauge the
instantaneous FL training status without privacy violation.

To be system-practical, the GIFT signal to quantify the
gradient bifurcation level must work well affronting the system
challenges in realistic FL scenarios. That is, it should be robust
to dynamic client participation and mini-batch randomness,
and shall also be resource-efficient despite a vast number
of participating clients. We adopt a smoothing method to
address the system and mini-batch instability, and adopt a
pooling method to compress the computation and memory

2

consumption when handling massive client participation. Atop
those methods, we propose a novel metric called gradient
consistency, which would decrease towards zero when the
gradient bifurcation level gradually amplifies. It then works
as a feedback signal to instruct frequency tuning in FL.

Finally, to be model-generic, instead of deriving a subtle
formula linking the ideal synchronization frequency to the
gradient consistency metric (which requires rigid but risky
model property assumptions), in GIFT we adopt a feedback-
driven frequency-tuning heuristic: Once gradient consistency
stabilizes around zero (indicating premature training stagna-
tion), we increase the synchronization frequency by a fixed
factor; such a process repeats when the gradient consistency
stabilizes again under the new frequency. We further extend
GIFT to incorporate modest frequency relaxation in phases
where frequent synchronization is not necessary (e.g. at the
FL commencement).

We have implemented GIFT with PyTorch and evaluated
its performance in a 100-node Amazon EC2 cluster emulating
real-world FL setups. In addition to the privacy-preserving
benefit, our evaluations confirm that GIFT is a practical
and general algorithm that can substantially improve the FL
performance on both accuracy and resource efficiency: It can
improve the convergence accuracy of VGG-16 by 10.7% with
a time reduction of 58.1% (after the same amount of training
rounds); meanwhile, given a fixed accuracy target, GIFT can
save the training time by 28.9% when compared with existing
methods.

II. BACKGROUND AND MOTIVATION

A. A Primer on Federated Learning

Machine learning models are increasingly trained with a vast
amount of data samples under the SGD (Stochastic Gradient
Descent) algorithm [10]–[12]. In many real-world scenarios,
the training samples are privacy-sensitive and dispersed on
distributed clients like IoT devices, cellphones [2], [13]–[15].
To train models without centralizing such private data, an
increasingly popular technique is Federated Learning (FL) [1],
[2], under which each client locally refines the model param-
eters and communicates the updates to the central server.

FedAvg Compared to computing servers in production clus-
ters, FL clients like IoT devices or cellphones suffer remark-
able bandwidth limitations. To reduce the communication cost,
FedAvg [1], [2] has become the de facto FL mechanism, which
dictates each client to perform multiple (denoted by τ) local
iterations before synchronizing their accumulated updates.
As a distinct hyper-parameter in FL, τ , or equivalently the
synchronization frequency, critically affects the model training
performance. With less frequent synchronization, the commu-
nication overhead for processing a given data amount can be
reduced. Yet, local datasets on different FL clients are usually
not independently and identically distributed (i.e., being non-
IID), and less frequent synchronization would on the other
hand compromise the model convergence accuracy. This has
been empirically observed in many existing works [2]–[5].
Given this trade-off, it is of urgent need to make FL accurate

and also efficient by properly setting up the synchronization
frequency.

B. Sync-Frequency Setup: Prior Arts and Their Limitations

While there do exist some related works [6]–[9], [16]–[18]
on setting up the synchronization frequency for distributed
model training, we find that they either work within an over-
narrow solution space (e.g., static frequency) or base their
solutions on unrealistic assumptions (e.g, IID data).

For FL scenarios, some research works [16]–[18] have
proposed to properly setup the synchronization frequency for
better resource efficiency. As a representative example, Wang
et al. [17] proposed Adaptive Federated Learning (hereafter
called by AFL by us), which estimates the best FL synchro-
nization frequency that can minimize the training loss under a
given resource budget. It derives a sophisticated formula rep-
resenting the best frequency, which involves the instantaneous
loss value, the concrete loss function characteristics (Lipschitz
parameter, smoothness parameter, gradient divergence bound)
and the data distribution of each worker. Yet, including AFL,
those works implicitly assume a fixed frequency without any
runtime dynamicity. This unnecessarily narrows down the
solution space by excluding the dynamic frequency-tuning
strategies, and may thus suffer suboptimal performance (As
shown later in §V, a fixed frequency may be either too high
or too low for different training phases).

For cluster scenarios, a training method called local SGD (or
periodical averaging) [6]–[9] also allows workers to proceed
for multiple local iterations before one global synchronization,
and some works in this regard explored how to dynamically
change the synchronization frequency. For example, Ada-
Comm [7] formulated the best frequency that can minimize
the training error after a given time budget; it further extended
that static formula into a dynamic strategy by dividing the
training process into short intervals and estimating the best
frequency in each interval. Nonetheless, those works did not
consider non-IID data in their solution design, rendering their
applicability in FL scenarios questionable.

Design Requirements In particular, given the distinct FL
characteristics, we notice that there exist three key require-
ments that any effective frequency tuning method under FL
must comply with:

1) Privacy-Preserving Requirement. Data privacy is a
primary concern for FL, and a key principle of FL is that
only gradients (or equivalently the model parameters) can
be collected from the clients [13], [14]; collecting additional
information would increase the risk of privacy leakage. Prior
works base their solutions mainly on mathematical formulas,
and require client knowledge (e.g., loss values) as essential
components in their formulas. The AFL work [17] even de-
mands the information of local data distributions, which would
severely impair the client privacy. To be privacy-preserving,
we need to perceive the FL training status from gradients. In
standard FL, model gradients are the default content collected
from clients, and would be readily available at the FL server.

2) Practicality Requirement. A well-known system char-
acteristic for FL is that clients may dynamically join or

3

leave training at random time [13], [19]. Meanwhile, for
commercial FL applications the number of clients may be
quite large [20]. Existing methods ignored such stability and
scalability challenges, and may suffer performance degradation
as well as large maintenance cost.

3) Generality Requirement. A FL framework may serve
various models without model-specific customization; hence,
frequency tuning strategies in FL shall not rely on any model-
specific characteristics. Yet, the aforementioned works build
their solutions with unrealistic model assumptions. For ex-
ample, AFL [17] derives its formulation by assuming convex
loss functions, which does not hold for deep learning models;
it also requires the smoothness constant, the Lipschitz-ness
constant and the gradient variance bound, which are hard to
obtain in reality. In fact, while such theoretical analysis can
yield inspiring insights, given the analytical complexity of
neural network models, it is however too risky to directly work
out the exact FL synchronization frequency from them. To be
model-generic, our solutions should be built not on end-to-end
formulations but with a feedback control heuristic.

To summarize, in this work we seek to design a privacy-
preserving, system-practical and model-generic frequency tun-
ing strategy to make FL accurate and also efficient. The
remaining part of this paper is organized as follows. In §III,
we will analyze from the gradient perspective how FL per-
formance is affected by synchronization frequency, and then
describe a gradient pattern that can reflect the instantaneous
training status. In §IV, we give the definition of our feedback
signal, and elaborate our frequency tuning algorithm based on
that signal. We further evaluate the effectiveness of our GIFT
solution in §V. Finally, we introduce some additional related
work in §VI and conclude in §VII.

III. SYNC-FREQUENCY AND FL PERFORMANCE: A
GRADIENT POINT OF VIEW

In this section, we first theoretically and experimentally
analyze the impact of synchronization frequency on FL per-
formance, and then introduce an interesting phenomena called
gradient bifurcation, which can help to reflect the instanta-
neous training status.

A. Impact of Synchronization Frequency

To properly setup the FL synchronization frequency, we
first need to know the impact of a given frequency on the
FL training performance.

While a series of research works [17], [18], [21], [22]
have theoretically analyzed the FL convergence process, we
find that they are not suitable for our needs. Those works in
general follow a common methodology: first assume a constant
bound for the gradient variance, and then derive a formula
representing how fast the model parameters can converge.
Nonetheless, fast convergence rate does not necessarily mean
high accuracy; meanwhile, the gradient variance bound—as a
highly idealized ground-truth knowledge—has little relation-
ship with the instantaneous gradient behavior, thus yielding
little help for understanding runtime FL status.

TABLE I: Summary of Main Notations

N Number of clients

Di Local dataset on client-i

l(s, ω) Loss value given sample s and parameter ω

Li(ω) Local loss function on client-i

L?(ω) Global loss function

ωik Local model on client-i at iteration k

ω?k Ideal model at iteration k if trained with IID data

ω? Converged model if trained with IID data

ω̄? Converged model under realistic FL

τ Synchronization frequency (sync once for τ iterations)

uiτ Accumulated gradient over τ iterations on client-i

u?τ Ideal value of uiτ if trained with IID data

eiτ Local-error component of uiτ
β Lipschitz constant in the smoothness assumption

C Metric of gradient consistency

γ Divisor to scale down τ

δ Addend to increase τ

θ EMA smoothing factor

P̃r EMA value of positive gradient component

Ñr EMA value of negative gradient component

In our analysis, we primarily want to understand why there
is an accuracy degradation when training models under FL
with non-IID data: What is the key factors behind? And can
we somehow probe the related training status with gradient-
wise characteristics at runtime? We resort to the following
theoretical analysis to find out the answers.

Symbol Description In our FL setup, there are N clients
each with a local dataset Di (i = 1, 2, ..., N). Let l(s, ω) be the
loss value when predicting sample s with parameter ω, then the
local loss function on client-i is Li(w) = 1

|Di|
∑
s∈Di l(s, ω)

and the global loss function as the true optimization target
is L?(ω) = 1

|∪Di |
∑
s∈∪Di

l(s, ω). For simplicity we assume

balanced data such that L?(ω) = 1
N

∑N
i=1 L

i(ω). Let ωik be
the local model on client-i after refined for k iterations from
ω0, and ω?k be the ideal model when refined with a globally-
shuffled IID dataset also for k iterations from ω0. Table I has
listed all the symbol notations adopted in this paper.

To facilitate our analysis of gradient behavior, we seek to
decouple the local gradient into two components: a global
component and a local-error component. To start with, we
derive Lemma 1 based on the standard convexity1 and smooth-
ness assumptions.

Assumption 1 (Convexity). The loss function L?(ω) and local
loss functions Li(ω) (i = 1, 2, ..., N) are convex, i.e., L(y) ≥
L(x) +∇L(x)T (y − x).

Assumption 2 (β-Smoothness). The loss function L?(ω) and
each local loss function Li(ω) (i = 1, 2, ..., N) is β-smooth,

1This convexity assumption does not invalidate our solution applicability
for general models (which are mostly non-convex). Because our algorithm
proposed later is based on qualitative properties (instead of quantitative
derivations), and the qualitative behaviors around the local minima of non-
convex models resemble that of convex ones.

4

i.e., ‖∇Li(x) − ∇Li(y)‖ ≤ β‖x − y‖. It also means that
∇Li(ω) is β-Lipschitz, or equivalently ‖∇2Li(ω)‖ ≤ β.

Lemma 1 (Local Gradient Composition). Let uiτ = ωiτ − ω0

be the accumulated gradient2 on client-i after τ iterations,
then uiτ = u?τ + eiτ , where u?τ is the ideal gradient attained
with IID data representing the global component, and eiτ is
the local-error component:

eiτ =−η
τ−1∑
k=0

[∇Li(ω?k)−∇L?(ω?k)+〈∇2Li(ω?k), ωik−ω?k〉].

The proof of Lemma 1 can be found in Appendix. This
lemma implies that the gradient error of a FL client is related
to the gap between the local and global loss landscapes
(∇2Li(ω), i.e., the hessian matrix, or more straightforwardly,
the curvature). Moreover, regarding the aggregated gradient
after a synchronization round, with Lemma 1 we can further
get the following Theorem:

Theorem 1 (Gradient Error after Synchronization). Let ūτ =
1
N

∑N
i=1 u

i
τ and let d(τ) = ‖ūτ −u?τ‖ be aggregated gradient

error after each client locally refines the parameter for τ
iterations from ω0, then

d(τ) ≥ (τ − 1)
η2

N
‖
N∑
i=1

〈∇2Li(ω0),∇Li(ω0)−∇L?(ω0)〉‖.

Theorem 1 shows that the error of an aggregated gradi-
ent is determined by two factors: first by the heterogene-
ity among clients’ loss curvatures ({∇2Li(ω0)}), and sec-
ond by the synchronization frequency. In particular, since
by definition

∑N
i=1[∇Li(ω0) − ∇L?(ω0)] = 0, the item

‖
∑N
i=1〈∇2Li(ω0),∇Li(ω0)−∇L?(ω0)〉‖ can be viewed as

assigning different weights to a set of numbers whose sum
is zero. If the weights {∇2Li(ω0)} are homogeneous across
different clients, e.g., when training with IID data, then the
aggregated gradient has no error; otherwise the error would
augment with the heterogeneity level of {∇2Li(ω0)}.

From the above theorem, we learn that the error would
amplify with larger non-IID level or larger τ , consistent with
the empirical results in existing works [2]–[5]. Atop this per-
round synchronization error, we can further derive Theorem 2
that depicts the model convergence status:

Theorem 2 (Suboptimal Convergence). Suppose FL process
converges at parameter ω̄?, and ω? is the ideal parameter
under IID dataset. Then

‖ω̄?−ω?‖≥ (τ−1)η

βN
‖
N∑
i=1

〈∇2Li(ω̄?),∇Li(ω̄?)−∇L?(ω̄?)〉‖.

2By gradient, we refer to the accumulated update over the entire round—
with the learning rate η integrated in. In this sense, our analysis in this work
is independent to the specific gradient generating scheme or learning rate
scheme, and can thus be extended to other SGD variants like Adam [23] and
AdaGrad [24]. Besides, for simplicity, in our analysis we ignore the impact of
random sample selection within each mini-batch, and focus on the expected
gradient of the local loss function. We will address mini-batch randomness
later in §IV.

−10 −5 0 5 10 15 20

!

Lo
ss

 V
al

ue
 L1(!)=(!+2)2

L2(!)=1
5
(!¡10)2

L⋆(!)=L
1+L2

2
=3
5
!2 +12

Fig. 1: During local iterations each FL client may already
reach its local optimum (−2 and 10). With inaccurate gradient
the parameter would be refined to 4 instead of the expected 0.

This theorem shows that, for cases with heterogeneous
{∇2Li(ω0)}, the FL process would stagnate prematurely at a
suboptimal position, with the error gap positively correlated to
τ . Obviously, training around this position is a severe resource
wastage with no accuracy benefit. To better understand the root
cause of suboptimal stagnation from the gradient perspective,
we resort to a toy example with quadratic loss functions.

Our example is shown in Fig. 1 where there are two
clients with respective loss function L1(ω) = (ω + 2)2

and L2(ω) = 1
5 (ω − 10)2. The two loss functions exhibit

different curvatures and have different local optima −2 and
10, emulating a non-IID setup. The global loss function to
optimize is thus L?(ω) = 1

2 [L1(ω)+L2(ω)] = 3
5ω

2+12, with
the optimal parameter ω? be 0. During the local iterations,
each client is essentially refining its parameter towards its
local optimum; in the first iteration of a round, the local
gradients if averaged can reflect the true optimal one, yet
in later iterations, due to heterogeneous curvatures, gradients
from different clients would decay in different rates, making
the aggregated gradient less accurate. For example, if the
synchronization is so late such that each client reaches its local
optimum, the aggregated gradient would point to the optimum
average 4 instead of to the expected global optimum 0. The
same phenomena would repeat in later rounds, meaning that
the FL process stagnates at a suboptimal state. Thus, more
frequent synchronization can reduce the negative impact of
gradient curvature and make the aggregated gradient more
accurate for the true global optimum, which can be further
verified by testbed measurements.

Testbed Verification To empirically verify the impact of
synchronization frequency on FL training performance in a
microscopic manner, we experiment with both convex (SVM)
and non-convex (LeNet-5 [25]) models. The SVM model is
trained upon 50,000 randomly-generated points composed of 2
classes, with two clients each holding only 1 class; the LeNet-
5 model is trained upon CIFAR-10 dataset [26], also with 2
clients each holding only 5 classes. The initial τ is 500, and
at epoch 20 (100) for SVM (LeNet-5) we change it to 1. In
Fig. 2, for each model we depict the instantaneous value of
a randomly-selected parameter as well as the model accuracy.
As suggested in the figure, with higher-quality gradients after
increasing the synchronization frequency, the parameters can
be refined out of suboptimal stagnation and reach a better
model accuracy.

Although in the above example a higher frequency can bring

5

0 10 20 30 40
Epoch

-1.0

-0.5

0.0

0.5

1.0

Pa
ra

m
et

er
 V

al
ue

Parameter
0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Accuracy

(a) SVM

0 500 1000 1500 2000
Epoch

-0.2

0.0

0.2

0.4

0.6

0.8

Pa
ra

m
et

er
 V

al
ue

Parameter
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Accuracy

(b) LeNet-5

Fig. 2: When training with two clients over non-IID data,
by increasing the synchronization frequency (at epoch 20
for SVM and epoch 1000 for LeNet-5), the sampled global
parameter can get closer to the true optimum, and the models
can attain a higher accuracy. The dashed lines show the
variables without frequency change.

remarkable accuracy performance benefit, we cannot directly
set τ = 1 for FL due to the prohibitively large communication
cost. To make FedAvg accurate and also efficient, we need
to strategically adjust the synchronization frequency during
the training process. Yet, how do we know the time to adjust
the synchronization frequency under the privacy constraint3?
Based on our previous analysis, we find an intriguing gradient
pattern being a great fit for that purpose.

B. Phenomenon of Gradient Bifurcation

During the model training process, while an individual
gradient may exhibit strong randomness, there actually exists
a clear statistical pattern for gradients across different clients.
In practice we have observed an interesting phenomena called
gradient bifurcation, meaning that gradients from different FL
clients are consistent in the beginning but conflicting later. We
elaborate on this phenomena with theoretical explanations as
well as testbed measurements.

Theoretical Insight From Lemma 1, we learn that the local
gradient (uiτ) can be decoupled into a global component (u?τ)
and a local-error one (eiτ): The former is identical for all
the clients, while the latter is related to the heterogeneity of
clients’ local loss surfaces. At FL commencement, the model
parameters are usually far away from the optimum, thus u?τ
dominates uiτ and this yields a strong gradient consistency.
In contrast, when the model parameter ω moves close to the
optimal region, u?τ would shrink (due to convexity) and it
is the error component eiτ that dominates uiτ . Consequently,
gradients from different clients would gradually bifurcate.

We further illustrate the gradient bifurcation phenomena
also with Fig. 1. When the initial parameter is far away
from the optima region (−2 to 10), say −100, the gradients
from both clients would be consistently positive. With a larger
curvature, gradient of L1(ω) would decay faster than that of
L2(ω): When the parameter moves across −2, the gradient

3Validating accuracy or loss on the FL server is also inappropriate to work
as feedback signals. Because frequent validations would incur much overhead.
Besides, with the continuous evolution of realistic data, it is hard to maintain
an up-to-date validating dataset on the FL server.

0 100 200 300 400 500
Synchronization Round

-1.0

-0.5

0.0

0.5

1.0

G
ra

di
en

t V
al

ue

client-1 client-2 0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

Accuracy

0 100 200 300 400 500
Synchronization Round

-1.0

-0.5

0.0

0.5

1.0

G
ra

di
en

t V
al

ue

client-1 client-2 0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

Accuracy

Fig. 3: When training LeNet-5 with 2 clients, the gradients of
two randomly-chosen parameters gradually bifurcate.

of client-1 would become negative, conflicting with that of
client-2. Finally the two gradients well counteract with each
other, and the model parameter stagnates.

Testbed Verification We further verify gradient bifurcation
with testbed measurements. We train the LeNet-5 model fol-
lowing the setup in Fig. 2b (two clients with non-IID data), and
measure the instantaneous gradient values of two randomly-
selected parameters on both clients. As depicted in Fig. 3,
the gradients for both parameters would bifurcate after around
round-100, the extent of which exhibits a clear correlation with
the model convergence status (measured by accuracy): In the
two figures, the training process stagnates when the bifurcation
level is approximately maximized.

To summarize, gradient bifurcation can effectively signal the
FL training status without compromising FL privacy. Yet, it
remains unclear how to quantify the gradient bifurcation level
and how to leverage it for tuning synchronization frequency.
We will answer this question in the next section.

IV. GRADIENT-INSTRUCTED FREQUENCY TUNING

In this section, we propose Gradient-Instructed Frequency
Tuning (GIFT), a frequency tuning algorithm for FL that is
privacy-preserving, system-practical and also model-generic.
We first propose a metric to quantify gradient bifurcation
level, and then devise a feedback-driven heuristic to adjust
synchronization frequency at runtime.

A. Quantifying Gradient Bifurcation Level

To quantify the extent of gradient bifurcation, we first
propose an intuitive metric: C =

‖
∑
i u
i
τ‖∑

i ‖uiτ‖
. This metric depicts

the effective portion of the aggregated gradient that does help
the model to move towards the true optimum. Obviously, C
is 1 when all the gradients are of the same direction, and is 0
if they well counteract with each other, i.e., when suboptimal
stagnation occurs. Nonetheless, this metric is not practical for a
real-world FL setup. To be clear, we summarize the practicality
challenges of FL as follows:

1) Stability Challenge. Since samples processed in a
SGD iteration are chosen randomly, local gradients fluctuate
drastically, as can be seen in Fig. 3. This statistical instability
may inundate the expected bifurcation pattern of gradient.
Besides, in real-world FL setup the clients are also unstable:
FL clients may join or leave randomly during training, and
the FL server usually collects gradients from only a portion

6

of the clients whoever reporting the earliest, so as to avoid
waiting for stragglers [13], [19], [20]. A practical metric must
be robust to such statistical and systematical instability.

2) Scalability Challenge. Meanwhile, in realistic FL
applications like GBoard [20], there may be hundreds or
thousands of clients participating simultaneously. Therefore,
our metric should scale well in computing or storage overhead.

To tackle those challenges, we extend the previous metric
definition with smoothing and pooling techniques.

Smoothing To address statistical instability, we smooth
the raw gradients with their historical values. To maintain low
storage overhead, instead of using a window-based smoothing
method, we calculate the gradients’ exponential moving aver-
age (EMA). Let 〈·〉θ denote an exponential moving average
with decay factor θ, and uiτ,r be the local gradient of client-i
in rth round, then we maintain ũiτ,r =

〈
uiτ,r

〉
θ

= θ ∗ ũiτ,r−1 +

(1− θ) ∗ uiτ,r.
Pooling Note that maintaining ũiτ,r for each client is
memory-inefficient given the large client quantity, and is even
infeasible due to participant instability. To tackle that problem,
we further propose bilateral gradient pooling—the FL server
only maintains two EMA gradients: one to collect the positive
gradients from any client, and the other the negative ones.
When the local gradients bifurcate, the two EMA gradients
also bifurcate. This way, we can get a stable gradient statistics
pattern despite the unstable client participation.

Gradient Consistency Combining the above smoothing
and pooling techniques, at round r, we define our customized
metric, gradient consistency, as:

C=
‖ P̃r+Ñr ‖
‖ P̃r ‖+‖Ñr ‖

, where

{
P̃r=

〈∑
i Relu(uiτ,r)

〉
θ

Ñr=
〈∑

i -Relu(-uiτ,r)
〉
θ
.

(1)

Here P̃r collects the EMA values of all the positive gradient
components, and Ñr collects the EMA values of all the
negative gradient components (we use the Relu operation for
sign filtering). When the positive components and negative
components well counteract with each other, C would be
close to 0. Gradient consistency is thus a practical metric
that can represent how fast (in terms of the useful share out
of the aggregated gradient) the model is being refined to the
optimum. While ideally it shall decrease to zero when model
training stagnates, it is not so in practice because the impact
of random mini-batches cannot be completely eliminated by
smoothing; besides, for deep neural networks, there might be
irregular landscapes like flat minima [27], where the gradient
is not zero even at a local optimum. Therefore, we diagnose
training stagnation not by absolute value of the gradient
consistency but by its stabilizing behavior.

B. Tuning Frequency in a Feedback-driven Manner

To be model-generic, instead of deriving a subtle formula
representing the best synchronization frequency, we propose
Gradient-Instructed Frequency Tuning (GIFT), a feedback-
driven frequency tuning method based on the proposed gra-
dient consistency metric. In GIFT, each time the gradient
consistency stabilizes—a feedback signal suggesting that the

Algorithm 1 FL Workflow with GIFT
Require: τ, γ, δ, o . τ : synchronization frequency; γ: τ scale down
divisor; δ: τ scale up addend; o: observation window size to trigger τ scale up.

Client: i=1, 2, ..., N :
1: Procedure ClientIterate(k)
2: k←k+1 . update iteration id
3: ωik ← ωik−1 + uik . uik: local update in iteration k on client i
4: if k = ks then . ks: next iteration id for model synchronization
5: ωik, τ ←FL_Server.aggregate(ωik)

. synchronize global parameters and update the sync frequency
6: ks ← k + τ
FL Server:
7: Procedure Aggregate(ω1

k, ω2
k, ..., ωNk)

8: r←r+1 . update round id

9: ωr ← 1
n

∑n
i=1 ω

i
k . update global model

10: uir ← ωik − ωr−1, i=1, 2, ..., N. . get local accumulated update

11: calculate Cr from {uir} based on Eq. 1
12: if Cr ≥ Cr−1 then
13: τr ← τr−1/γ .multiplicatively increase sync frequency
14: else if Cm+1<Cm and τm+1=τm ∀m∈{r−1,..., r−o}, then
15: τr ← τr−1 + δ . additively decrease sync frequency
16: Return ωr , τr

model can no longer be effectively refined under the current
frequency (τ)—we would scale down τ by a fixed divisor
(e.g., 2). With such a higher frequency, it is expected that the
aggregated gradient in each round can be more accurate and
the model can reach a higher accuracy.

Moreover, we also incorporate an extension that allows the
synchronization frequency to be modestly decreased at the
initial phase of the FL process. At FL commencement, the
global component u?τ dominates uiτ , rendering the gradient
quite consistent (as shown in Fig. 3), and it is not necessary to
conduct frequent synchronization. To exploit this optimization
opportunity, we tentatively increase τ in a linear manner every
a few rounds, until the gradient consistency metric signals that
the FL process stagnates. Yet, inflating τ is essentially trading
computation for communication efficiency, and to avoid the
risk of over-compromised computation efficiency, frequency
relaxation is not enabled by default.

Implementation We have implemented GIFT with Py-
Torch, and the detailed workflow is shown in Alg. 1. In
Procedure ClientIterate, lines 2-3 describe the regular
local updating, and lines 4-6 mean that the client shall com-
municate with the FL Server every τ iterations to get the latest
model ω as well as the updated synchronization frequency. In
Procedure Aggregate, the FL Server first updates the global
model with standard FedAvg (lines 8-9), and then calculates
gradient consistency metric (lines 10-11). In particular, if
gradient consistency no longer decreases, the synchronization
frequency represented by τ is divided by γ (lines 12-13); if
otherwise the gradient consistency metric keeps decreasing, τ
is increased with the addend δ (lines 14-15).

Regarding the algorithm complexity, with the pooling tech-
nique we need to maintain the EMA values of P̃r and Ñr, each
has the same size as the model (denoted by M). Therefore,
the space complexity is O(M) (with a very small coefficient).
Similarly, since GIFT enforces identical operations for each

7

0 1 2 3 4
Time (h)

0.0

0.2

0.4

0.6

0.8
Te

st
 A

cc
ur

ac
y

FedAvg w/ GIFT
FedAvg w/o GIFT

0 1 2 3 4
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

G
ra

di
en

t C
on

si
st

en
cy

 (C
)

C

0

30

60

90

120

150

Sy
nc

 F
re

qu
en

cy
 (τ

)

τ

(a) LeNet-5

0 10 20 30 40
Time (h)

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

FedAvg w/ GIFT
FedAvg w/o GIFT

0 10 20 30 40
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0
G

ra
di

en
t C

on
si

st
en

cy
 (C

)

C

0

30

60

90

120

150

Sy
nc

 F
re

qu
en

cy
 (τ

)

τ

(b) VGG-16

0 1 2 3 4
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

FedAvg w/ GIFT
FedAvg w/o GIFT

0 1 2 3 4
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

G
ra

di
en

t C
on

si
st

en
cy

 (C
)

C

0

30

60

90

120

150

Sy
nc

 F
re

qu
en

cy
 (τ

)

τ

(c) LSTM

Fig. 4: FL Performance with and without GIFT (accompanied
by the Frequency τ and Gradient Consistency C under GIFT)

gradient coordinate, the computation complexity to calculate
gradient consistency C is also O(M).

V. EVALUATION

In this section, we evaluate GIFT performance with testbed
experiments. We first visually and quantitatively verify the
effectiveness of GIFT in a 100-node cluster emulating realistic
FL scenarios, and then justify the superiority of GIFT over ex-
isting practices. We also examined the behavior of GIFT under
different levels of non-IID data, as well as the effectiveness of
frequency relaxation. Finally, we conduct sensitivity analysis
on the hyper-parameters involved.

A. Experimental Setup

Hardware Platform We emulate real-world FL scenarios
with 100 m5.large instances on Amazon EC2, each with
2 vCPU cores and 8GB RAM (similar with that of a smart
phone). The client bandwidth is configured to be 5Mbps with
the wondershaper [28] tool. The FL server is a c5.9xlarge
instance with 10Gbps bandwidth.

Training Setup Models trained in our evaluation are LeNet-
5 [25], VGG-16 [29] and a LSTM network (containing 2

TABLE II: Time and Accuracy After 1000 Rounds

Model Scheme Time (h) Accuracy (%)

LeNet-5 FedAvg 1.56 52.1
GIFT 0.64 56.8

VGG-16 FedAvg 81.9 60.8
GIFT 34.3 67.3

LSTM FedAvg 3.14 66.2
GIFT 1.62 74.8

recurrent layers with a hidden size of 64). LeNet-5 and VGG-
16 are trained on the CIFAR-10 dataset [26] and the LSTM
network is trained on the KeyWord Spotting (KWS) dataset—
a subset of the Speech Commands dataset [30] including 10
key words. To be realistic, instead of partitioning the initial
dataset after label sorting, we let the samples on each client
independently follow a Dirichlet distribution [3], [5], which
controls label class composition via a concentration parameter
α. In our experiments we set α to 1, emulating a modest
non-IID level. The learning rates are set to 0.01 (LeNet-5),
0.1 (VGG-16) and 0.05 (KWS), with weight decay of 0.01,
0.0005 and 0.01. The initial τ is set to 100. In GIFT, the EMA
smoothing factor θ is 0.9, and τ is divided by 2 once gradient
consistency no longer decreases.

B. GIFT Evaluation under a Realistic FL Setup

We first evaluate the overall performance improvement of
GIFT over FedAvg in a realistic FL setup with dynamic client
participation at a relatively large scale. Our cluster contains
100 clients: We let each client delay for a random period
before reporting its gradient, and in each round the FL server
only collects 40% gradients reported the earliest.

In Fig. 4, we show the overall performance of GIFT
when training the three models, including the instantaneous
gradient consistency (C) and synchronization frequency (τ).
As analyzed in §III-B, C does follow a decreasing pattern4.
Moreover, each time τ is halved under GIFT, in the next
moment there is a salient burst of C, indicating that a higher
frequency can reduce gradient error and make the aggregated
model closer to the true optimum.

We further make quantitative performance comparison be-
tween GIFT and standard FedAvg in Table II, which lists the
time cost and accuracy attained when training each model
for 1000 rounds. By adaptively tuning the synchronization
frequency to ensure continuous model improvement, GIFT
enables each model to achieve a higher accuracy5 with less
time consumption. For example, GIFT can reduce LeNet-5
training time by 58.9% while improving the accuracy by 9%.
Additionally, thanks to our pooling technique in §IV, on the
FL server we did not observe noticeable CPU and memory
overhead after enabling GIFT.

4For VGG-16 in Fig. 4b, C stagnates at a large value, because VGG-16 is
a large, over-parameterized model [31] with salient flat minima behavior [27].

5We accept near-optimal accuracy instead of pursuing for the optimal
accuracy because the latter requires training with τ = 1 for many (∼105)
rounds, which is cost-prohibitive even with GIFT.

8

0.0 0.5 1.0 1.5 2.00.3

0.4

0.5

0.6
Te

st
 A

cc
ur

ac
y

GIFT
AdaComm
AdaComm w/o
saturation fix
AFL

0.0 0.5 1.0 1.5 2.0
Time (h)

0
50

100
150
200
250
300

Sy
nc

 F
re

qu
en

cy
 (τ

) GIFT
AdaComm
AdaComm w/o
saturation fix
AFL

(a) LeNet-5

0.0 0.5 1.0 1.5 2.00.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

GIFT
AdaComm
AdaComm w/o
saturation fix
AFL

0.0 0.5 1.0 1.5 2.0
Time (h)

0

50

100

150

200

Sy
nc

 F
re

qu
en

cy
 (τ

) GIFT
AdaComm
AdaComm w/o
saturation fix
AFL

(b) LSTM

Fig. 5: Comparison between GIFT and Existing Methods

C. Comparison with Existing Methods

We implement AFL [17] and AdaComm [7], two typical
methods discussed in §II-B, also in PyTorch. In our evalu-
ation, we obtain the ground-truth knowledge (e.g., Lipschitz
parameter, smoothness parameter, gradient divergence bound)
required by AFL via a trial run, and in AdaComm the initial
frequency is selected via grid search. In particular, to address
loss saturation due to plateaus or noises, AdaComm adopts
a saturation fix that halves τ once the loss value no longer
decreases; to evaluate the true effectiveness of the formula-
based solution, we incorporate a pruned version of AdaComm
without that saturation fix. Additionally, since those methods
do not consider system challenges of FL, for fair comparison
we switch to a 20-node cluster with full client participation.

Fig. 5 shows the instantaneous accuracy and frequency
when training LeNet-5 and LSTM under different schemes.
It shows that, apart from the advantages of privacy preserving
and practicality, GIFT can also attain a better accuracy per-
formance over existing methods. Given a LeNet-5 accuracy
target of 0.6, time consumption under GIFT is 28.9% less
than AdaComm, and 61.2% less than AFL. We also note
that AdaComm without saturation fix fails to behave well for
both models, confirming the weakness of existing methods as
discussed in §II-B.

Regarding the reasons behind, for AFL, the fixed frequency
calculated is too small to be communication-efficient in the
beginning, and is on the other hand too large to attain high
accuracy in the end. For AdaComm, since its formulation is
based on IID label distribution, the formula on τ is actually in-
accurate for realistic FL setup. Moreover, due to loss plateaus
problem (i.e., accuracy improved but the loss value not so),
the training loss is sometimes not an appropriate indicator of
the training status6.

6It is well-known that the training loss in SGD may get stuck on plateaus
landscape or fluctuate due to mini-batch randomness [7]. Once that occurs
(i.e., the loss no longer decreases), AdaComm would degrade to naive
frequency scaling (i.e., having τ halved), which works as a boundary-case
remediation. Nonetheless, from Fig. 5 we find that the accuracy improvement
of AdaComm largely comes from such a boundary-case remediation.

0 1 2 30.1

0.3

0.5

0.7

Te
st

 A
cc

ur
ac

y

0 1 2 30.0

0.3

0.6

G
ra

di
en

t C
on

si
st

en
cy

0 1 2 3
Sync Round (×10000)

0

50

100

150

200

Sy
nc

 F
re

qu
en

cy
 (τ

) IID w/ GIFT
IID w/o GIFT
Non-IID w/ GIFT
Non-IID w/o GIFT

(a) LeNet-5

0 1 2 30.1

0.3

0.5

0.7

0.9

Te
st

 A
cc

ur
ac

y

0 1 2 30.0

0.3

0.6

G
ra

di
en

t C
on

si
st

en
cy

0 1 2 3
Sync Round (×1000)

0

50

100

150

200

Sy
nc

 F
re

qu
en

cy
 (τ

) IID w/ GIFT
IID w/o GIFT
Non-IID w/ GIFT
Non-IID w/o GIFT

(b) LSTM

Fig. 6: GIFT Behavior under Different Levels of Non-IID Data

D. Effect of Frequency Relaxation

We further evaluate the effectiveness of frequency relaxation
extension. To be specific, we additively increase τ by 5 once C
keeps decreasing for 10 consecutive rounds, and Fig. 7 depicts
the testing accuracy (against communication rounds) when
training LeNet-5 and LSTM with the 20-node cluster. For both
models, frequency relaxation can yield a prompter accuracy
improvement especially in the early stage. For example, after
training LeNet-5 for 500 rounds, it can achieve a test accuracy
of 0.55, 5.1% better than that without frequency relaxation.
Note that such benefit would be larger for cases with a smaller
τ initialization, as verified by the LSTM training results in
Fig. 7b where τ0 is set to 10.

E. GIFT Behavior under Different Levels of Non-IID Data

So far, we are operating with a modest level of non-IID
data controlled by the hyper-parameter α = 1 (§V-A); yet,
how would GIFT behave if the data distribution is otherwise
IID or extremely non-IID? To further reveal that, we resort
to micro-benchmark experiments with different levels of non-
IID data. In the IID case, each worker has a full copy the
entire dataset; in the non-IID case, we separate the whole
dataset across 5 clients—each hosting 2 label classes with no
overlap. In each case we record the instantaneous test accuracy,
gradient consistency and sync-frequency under GIFT as well
as the test accuracy under vanilla FedAvg.

From Fig. 6, we first learn that data distribution remarkably
affects the model training performance. When training LeNet
and LSTM with the extremely non-IID setup, there is an
accuracy loss of nearly 50%, and the training time required
towards model convergence is also hugely inflated—consistent
with previous measurements in [2]–[5]. Regarding the benefit

9

0 1 2 30.3

0.4

0.5

0.6
Te

st
 A

cc
ur

ac
y

GIFT
GIFT with τ
Relaxation
Vanilla FedAvg

0 1 2 3
Sync Round (×1000)

0

100

200

300

400

500

Sy
nc

 F
re

qu
en

cy
 (τ

) GIFT
GIFT with τ
Relaxation
Vanilla FedAvg

(a) LeNet-5 (τ0 = 100)

0 1 2 30.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

GIFT
GIFT with τ
Relaxation
Vanilla FedAvg

0 1 2 3
Sync Round (×1000)

0

100

200

300

Sy
nc

 F
re

qu
en

cy
 (τ

) GIFT
GIFT with τ
Relaxation
Vanilla FedAvg

(b) LSTM (τ0 = 10)

Fig. 7: Frequency relaxation can yield faster accuracy increase
especially in the earlier stage.

of GIFT, for the IID case the GIFT performance is similar
with that under vanilla FedAvg (as implied by 2), and for the
non-IID case GIFT can achieve salient accuracy improvement.
Regarding the gradient consistency metric, we note that for the
IID case there is also a decaying trend. This is because in SGD
the randomness incurred by mini-batch sampling gradually
dominates the local gradients; with the pooling technique
(§IV-A), the calculated gradient consistency would also keep
decreasing. Regarding the frequency-tuning actions, we find
that the frequency decaying paces in both IID and non-IID
cases are mostly similar. In general, GIFT can work smoothly
without particular requirements on the data IID level.

F. Sensitivity Analysis

In Fig. 8 we further evaluate the impact of GIFT sync-
interval divisor, i.e., γ in Alg. 1. We change it—from the
default value 2—respectively to 3 and 10, and evaluate the
GIFT performance in the 20-node cluster. As shown in Fig. 8,
GIFT behavior is generally stable with different γ: The syn-
chronization interval τ is decreased to 1 at a similar time, and
the accuracy performance is also similar. This suggests that
our GIFT algorithm is robust to the γ hyper-parameter.

Meanwhile, recall that when enabling frequency relaxation
(as in §V-D), the default addend δ to increase τ is set to 5;
here we also evaluate its sensitivity with Fig. 9. For each of
the experiments in Fig. 7, we change δ respectively to 2 and
10 and repeat the same training process. As shown in Fig. 9, a
larger δ can yield a faster accuracy improvement in the early
stage, although that speedup would be caught up by others in
the later stage when a smaller τ becomes more beneficial. In
general, the performance of GIFT is also stable with respect
to different δ values.

VI. ADDITIONAL RELATED WORK AND DISCUSSION

Recall that in §II-B we have introduced a series of
frequency-setup methods for FL; to improve FL accuracy
or efficiency, in the literature there have been some other

0 1 2 30.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

γ=2

γ=3

γ=10

0 1 2 3
Sync Round (×1000)

0

50

100

150

Sy
nc

 F
re

qu
en

cy
 (τ

)

γ=2

γ=3

γ=10

(a) LeNet-5

0 1 2 30.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

γ=2

γ=3

γ=10

0 1 2 3
Sync Round (×1000)

0

50

100

150

Sy
nc

 F
re

qu
en

cy
 (τ

)

γ=2

γ=3

γ=10

(b) LSTM

Fig. 8: GIFT Performance with Different γ Values (γ is used
to divide τ when increasing synchronization frequency)

0 1 2 30.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y
δ=2
δ=5
δ=10

0 1 2 3
Sync Round (×1000)

0

300

600

900

Sy
nc

 F
re

qu
en

cy
 (τ

)

δ=2
δ=5
δ=10

(a) LeNet-5

0 1 2 30.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

δ=2
δ=5
δ=10

0 1 2 3
Sync Round (×1000)

0

100

200

300

Sy
nc

 F
re

qu
en

cy
 (τ

)

δ=2
δ=5
δ=10

(b) LSTM

Fig. 9: GIFT Performance with Different δ Values (δ is used
to increase τ when relaxing synchronization frequency)

interesting directions not involving frequency-tuning. In this
section, we will briefly review those parallel directions and
further discuss the privacy-preserving property of GIFT.

Improving FL Accuracy To mitigate accuracy loss due
to non-IID data in FL, two typical methodologies other than
frequency tuning are data complementing and optimization
rectifying. Data complementing means to reduce data non-IID
level by copying a few common samples to each client [4], or
by augmenting clients’ local datasets with auxiliary samples
generated from GAN (Generative Adversarial Network) mod-
els [32]. Yet these methods may incur large computation and
communication overheads. Optimization rectifying means to
add an extra regularizing term to the loss function [32], [33],
or to add a specific momentum to the optimizer [34]. These
methods are not transparent to models and require expert
knowledge to set up. Overall speaking, our GIFT method
outperforms those methods by being light-weight and also
transparent to end users, not requiring any modifications to

10

the user-specified loss function or optimizers.

Improving Communication Efficiency To reduce commu-
nication cost of distributed training, quantization and sparsi-
fication are two well-known methodologies in addition to fre-
quency tuning. Quantization reduces bandwidth consumption
by transmitting low-precision updates, balancing the trade-off
between accuracy and gradient compressing level [1], [35],
[36]. Sparsification aims to synchronizing only the important
gradients under a given criterion like normalized magnitude
[37]–[40]. These methods have proven effective in reducing
the communication amount, yet they ignored the non-IID
problem in FL, and may thus suffer accuracy loss when applied
in realistic FL scenarios.

Privacy-preserving Characteristics of GIFT Privacy is
not an absolutely-defined conception. By privacy-preserving,
in this work we mean that GIFT does not compromise the ac-
curacy level of vanilla FL, better than existing practices based
on loss values. Nonetheless, it has been shown that certain
user information can still be recovered from gradients [41].
To solve this problem, differential privacy (DP) [42], [43]
is often adopted in FL to protect raw gradients by injecting
Gaussian noises to them. We note that applying DP does not
compromise the effectiveness of GIFT, because the noises
added by DP exhibit a similar impact with that of mini-
batch sample randomness, which is already solved with the
smoothing and pooling techniques (§IV).

VII. CONCLUSION

In this work, to attain better model accuracy and resource ef-
ficiency in FL, we have proposed GIFT, a privacy-preserving,
system-practical and model-generic scheme to adaptively tune
the synchronization frequency at runtime. GIFT gauges the
model training status with a novel metric called gradient
consistency, based on which it then multiplicatively increases
or linearly decreases the synchronization frequency. Prototype
evaluations in realistic FL setup have demonstrated the supe-
riority of GIFT in both accuracy and efficiency over existing
methods.

ACKNOWLEDGEMENT

The research was sponsored in part by the National Natural
Science Fundation of China (NSFC) (62202300) and Shanghai
Pujiang Program (22PJ1404600). It is also supported by a
RGC RIF grant under the contract R6021-20, RGC GRF
grants under the contracts 16209120, 16200221, 16213120,
16202121 and 11209520, as well as grants from CUHK
(4937007, 4937008, 5501329, 5501517).

APPENDIX

Lemma 1. Let ωik be the local parameter on client-i (i =
1, 2, ..., N) after refined for k iterations from ω0, and ω?k be
the ideal parameter when refined with IID dataset also for
k iterations from ω0. Under the Assumptions 1 and 2, let
uiτ = ωiτ−ω0 be the accumulated gradients on client-i after τ
iterations, then uiτ = u?τ + eiτ , where u?τ is the ideal gradient
with IID data and eiτ is the local error component:

eiτ =−η
τ−1∑
k=0

[∇Li(ω?k)−∇L?(ω?k)+〈∇2Li(ω?k), ωik−ω?k〉].

Proof. Since u?τ is the ideal gradient with IID data, i.e., u?τ =
−η
∑τ−1
k=0∇L?(ω?k), and let ∆i

k = ∇Li(ωik) − ∇L?(ω?k) be
the gradient error in the kth iteration, we have

eiτ =uiτ−u?τ =−η
τ−1∑
k=0

[∇Li(ωik)−∇L?(ω?k)]=−η
τ−1∑
k=0

∆i
k. (2)

Let vi(ω) = ∇Li(ω)−∇L?(ω), we have:

∆i
k = vi(ωik) + [∇L?(ωik)−∇L?(ω?k)]. (3)

Regarding the first term vi(ωik), because Assumption 2
indicates that L?(ω) is upper-bounded by a quadratic function,
and ωik−ω?k scaled by η can be arbitrarily small, we can skip
higher-order items and get:

vi(ωik) = vi(ω?k) + 〈∇vi(ω?k), ωik − ω?k〉. (4)

Similarly, regarding the second term in Eq. (3) we can get

∇L?(ωik)−∇L?(ω?k) = ∇L?(ω?k + ωik − ω?k)−∇L?(ω?k)

= 〈∇2L?(ω?k), ωik − ω?k〉.
(5)

With Eq. (4) and Eq. (5), we can transfer Eq. (3) to

∆i
k = vi(ω?k) + 〈∇vi(ω?k) +∇2L?(ω?k), ωik − ω?k〉

= vi(ω?k) + 〈∇2Li(ω?k), ωik − ω?k〉.
(6)

Therefore, we can get

eiτ = −η
τ−1∑
k=0

∆i
k = −η

τ−1∑
k=0

[vi(ω?k) + 〈∇2Li(ω?k), ωik − ω?k〉]

= −η
τ−1∑
k=0

[∇Li(ω?k)−∇L?(ω?k) + 〈∇2Li(ω?k), ωik − ω?k〉].

This completes our proof.

Theorem 1. Under the Assumptions 1 and 2, let ūτ =
1
N

∑N
i=1 u

i
τ and let d(τ) = ūτ − u?τ be aggregated gradient

error after each client locally refines the parameter for τ
iterations from ω0, then

d(τ) ≥ (τ − 1)
η2

N

N∑
i=1

〈∇2Li(ω0),∇Li(ω0)−∇L?(ω0)〉.

Proof. Since 1
N

∑N
i=1∇Li(ω?k) = ∇L?(ω?k), with Lemma 1

we can get:

d(τ) =
1

N

N∑
i=1

eiτ =
−η
N

τ−1∑
k=0

N∑
i=1

〈∇2Li(ω?k), ωik−ω?k〉. (7)

Let ∆k be the aggregated error in kth (k = 0, ..., τ − 1)
iteration:

∆k =
−η
N

N∑
i=1

〈∇2Li(ω?k), ωik−ω?k〉 (8)

Next, we seek to prove ∆k+1 ≥ ∆k with mathematical
induction.

When k = 0, since ω?0 = ωi0 = ω0, we have ∆0 = 0.

11

When k = 1, since ωi1 = ω0 − η∇Li(ω0) and ω?1 = ω0 −
η∇L?(ω0), and also let vi(ω) = ∇Li(ω)−∇L?(ω), we have

∆1 =
−η
N

N∑
i=1

〈∇2Li(ω?1), ωi1−ω?1〉=
η2

N

N∑
i=1

〈∇2Li(ω?1), vi(ω0)〉.

(9)
Since

∑
i v
i(ω0) = 0, ∆1 can be viewed as the sum-

mation of conflicting values {vi(ω0)} assigned with re-
spective weights {∇2Li(ω?1)}. If with IID data such that
∀i,∇2Li(ω) ≡ ∇2L?(ω), we then have ∆1 = 0; otherwise, if
for non-IID data that usually yields heterogeneous {∇2Li(ω)},
we have ∆1 6= 0, i.e., ∆1 > ∆0 = 0.

For clarity we focus on the case where there is only
one dimension in ω. Given that {Li(ω)} are convex and
smooth (the global optimum is optimal in each dimension),
the conclusion of single-dimension case can be extended to
multi-dimensional cases.

Given that ∆1 > 0, without loss of generality we can
assume that ∆1 > 0. With Eq. (8) the set of {i} can be divided
into two groups: {i+}—those such that ωi1 > ω?1 ; and {i−}—
those such that ωi1 < ω?1 . For simplicity, we assume there are
only two clients: i+ and i−. Given ∆1 > 0, under Eq. (9) and
with convexity we have:

∇2Li
−

(ω?1) > ∇2Li
+

(ω?1) > 0. (10)

Under mathematical induction, we assume that ∀k ∈
{0, 1, 2, ...,K − 1}, ∆k+1 > ∆k ≥ 0, and seek to prove
∆K+1 > ∆K . Based on the assumptions, we first have

ω̄K+1 − ω?K+1 =

K∑
k=0

∆k >

K−1∑
k=0

∆k = ω̄K − ω?K > 0 (11)

Given that ω̄k =
ωi

+

k +ωi
−
k

2 , Eq. (11) translates to

(ωi
+

K+1 − ω?K+1)− (ω?K+1 − ωi
−

K+1) >

(ωi
+

K − ω?K)− (ω?K − ωi
−

K) > 0.
(12)

We next seek to prove ∆K+1 > ∆K . Comparing ∆K+1 and
∆K , we have

∆K+1 −∆K =
∑

i∈{i+,i−}

− η

N
∇2Li(ω?K+1)(ωiK+1 − ω?K+1)

−
∑

i∈{i+,i−}

− η

N
∇2Li(ω?K)(ωiK − ω?K)

(13)
Under Assumption 2 (i.e., ∇2Li(ω?K+1) is bounded by a

constant) and with a small step size, we approximately have
∇2Li(ω?K+1) = ∇2Li(ω?K) = ∇2Li(ω?0) (in fact ∇2Li(ω) is
a constant if Li(ω) are quadratic functions). We further have

∆K+1 −∆K =

− η

N

∑
i∈{i+,i−}

∇2Li(ω?0)[(ωiK+1 − ω?K+1)− (ωiK − ω?k)]

= − η

N
∇2Li

+

(ω?0)[(ωi
+

K+1 − ω?K+1)− (ωi
+

K − ω?K)]

+
η

N
∇2Li

−
(ω?0)[(ω?K+1 − ωi

−

K+1)− (ω?K − ωi
−

K)].

(14)

Combining Eq. (10), Eq. (12) with Eq. (14), we can obtain
∆K+1 −∆K > 0, i.e., ∆K+1 > ∆K > 0.

Therefore for general case with τ > 1 we have,

d(τ) =

τ−1∑
k=0

∆k > (τ − 1)∆1

= (τ − 1)
η2

N

N∑
i=1

〈∇2Li(ω0), vi(ω0)〉.

Integrating the case of τ = 1 we complete the proof.

Theorem 2 (Suboptimal Convergence). Suppose FL process
converges at a point ω̄?, and ω? is the ideal parameter under
IID dataset. Then

ω̄?−ω?≥ (τ − 1)η

βN

N∑
i=1

〈∇2Li(ω̄?),∇Li(ω̄?)−∇L?(ω̄?)〉.

Proof. Under Theorem 1, we treat ūτ , u?τ and d as a function
of ω0, then we have dτ (ω) = ūτ (ω)− u?τ (ω).

When FL process stagnates at ω̄?, i.e., ūτ (ω̄?) = 0, we have

u?τ (ω̄?)≥(τ − 1)η2

N

N∑
i=1

〈∇2Li(ω̄?),∇Li(ω̄?)−∇L?(ω̄?)〉. (15)

Meanwhile, since u?τ (ω?) = 0, with Assumption 2 we have:

u?τ (ω̄?) = u?τ (ω? + ω̄? − ω?)
= u?τ (ω?) + 〈∇u?τ (ω?), ω̄? − ω?〉
= 〈∇u?τ (ω?), ω̄? − ω?〉 ≤ ηβω̄? − ω?.

(16)

Combining Eq. (15) and Eq. (16) our proof completes.

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[3] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” arXiv
preprint arXiv:1909.06335, 2019.

[4] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[5] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, T. N. Hoang,
and Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in ICML, 2019.

[6] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. R. Cadambe,
“Local sgd with periodic averaging: Tighter analysis and adaptive
synchronization,” in NeurIPS, 2019.

[7] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update sgd,” in SysML, 2019.

[8] P. Jiang and G. Agrawal, “Adaptive periodic averaging: A practical
approach to reducing communication in distributed learning,” arXiv
preprint arXiv:2007.06134, 2020.

[9] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local
sgd on identical and heterogeneous data,” in AISTATS, 2020.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NeurIPS, 2012.

[11] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of machine learning research, vol. 12, pp. 2493–2537, 2011.

[12] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” arXiv preprint arXiv:1409.3215, 2014.

[13] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” in SysML, 2019.

12

[14] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[15] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
USENIX ATC, 2020.

[16] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM, 2018.

[17] S. Wang, T. Tuor, K. K. Leung, C. Makaya, T. He, and K. Chan,
“Adaptive federated learning in resource constrained edge computing
systems,” Journal on Selected Areas in Communications, vol. 37, no. 6,
pp. 1205–1221, 2019.

[18] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” in IEEE INFOCOM, 2021.

[19] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection,” in USENIX OSDI,
2021.

[20] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ram-
age, and F. Beaufays, “Applied federated learning: Improving google
keyboard query suggestions,” arXiv preprint arXiv:1812.02903, 2018.

[21] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[22] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the ob-
jective inconsistency problem in heterogeneous federated optimization,”
NeurIPS, vol. 33, pp. 7611–7623, 2020.

[23] J. B. Diederik P. Kingma, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2017.

[24] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” Journal of machine
learning research, vol. 12, no. 7, 2011.

[25] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[26] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Technical Report, 2009.

[27] S. Hochreiter and J. Schmidhuber, “Flat minima,” Neural Computation,
vol. 9, no. 1, pp. 1–42, 1997.

[28] “Wonder Shaper,” https://github.com/magnific0/wondershaper, 2020.
[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[30] P. Warden, “Speech commands: A dataset for limited-vocabulary speech

recognition,” arXiv preprint arXiv:1804.03209, 2018.
[31] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “The

role of over-parametrization in generalization of neural networks,” in
ICLR, 2018.

[32] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated dis-
tillation and augmentation under non-iid private data,” arXiv preprint
arXiv:1811.11479, 2018.

[33] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” 2020.

[34] C. Li, R. Li, P. Zhou, H. Wang, Y. Li, S. Guo, and K. Li, “Gradient
scheduling with global momentum for non-iid data distributed asyn-
chronous training,” arXiv preprint arXiv:1902.07848, 2019.

[35] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in INTERSPEECH, 2014.

[36] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in NeurIPS, 2017.

[37] N. Strom, “Scalable distributed dnn training using commodity gpu cloud
computing,” in INTERSPEECH, 2015.

[38] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching LAN speeds,” in USENIX NSDI, 2017.

[39] N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen, “Communication
quantization for data-parallel training of deep neural networks,” in IEEE
MLHPC, 2016.

[40] L. Wang, W. Wang, and B. Li, “CMFL: Mitigating communication
overhead for federated learning,” in IEEE ICDCS, 2019.

[41] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep
learning via additively homomorphic encryption,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.

[42] M. A. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via
aggregation of locally trained classifiers.” in NeurIPS, 2010.

[43] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in ACM
CCS, 2015.

Chen Chen is an Associate Professor in John
Hopcroft Center for Computer Science, Shanghai
Jiao Tong University. He received the B.Eng. degree
from Tsinghua University in 2014, and the PhD de-
gree in 2018 from Department of Computer Science
and Engineering, Hong Kong University of Science
and Technology. His recent research interests include
distributed deep learning, big data systems and net-
working. He previously worked as a researcher at the
Theory Lab, Huawei Hong Kong Research Center.

Hong Xu is an Associate Professor in Department
of Computer Science and Engineering, The Chi-
nese University of Hong Kong. His research area
is computer networking and systems, particularly
big data systems and data center networks. From
2013 to 2020 he was with City University of Hong
Kong. He received his B.Eng. from The Chinese
University of Hong Kong in 2007, and his M.A.Sc.
and Ph.D. from University of Toronto in 2009 and
2013, respectively. He was the recipient of an Early
Career Scheme Grant from the Hong Kong Research

Grants Council in 2014. He received three best paper awards, including the
IEEE ICNP 2015 best paper award. He is a senior member of IEEE and ACM.

Wei Wang received his B.Engr. and M.Engr. de-
grees from the Department of Electrical Engineering,
Shanghai Jiao Tong University, China, in 2007 and
2010, respectively and his Ph.D. degree from the
Department of Electrical and Computer Engineer-
ing, University of Toronto, Canada, in 2015. Since
2015, he has been with the Department of Com-
puter Science and Engineering at the Hong Kong
University of Science and Technology (HKUST),
where he is currently an Associate Professor. He is
also affiliated with the HKUST Big Data Institute.

Dr. Wang’s research interests cover the broad area of distributed systems,
with focus on serverless computing, machine learning systems, and cloud
resource management. He published extensively in the premier conferences
and journals of his fields. His research has won the Best Paper Runner Up
awards of IEEE ICDCS 2021 and USENIX ICAC 2013.

Baochun Li received his Ph.D. degree from the De-
partment of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, in 2000. Since then,
he has been with the Department of Electrical and
Computer Engineering at the University of Toronto,
where he is currently a Professor. He holds the Bell
Canada Endowed Chair in Computer Engineering
since August 2005. His research interests include
large-scale distributed systems, machine learning,
security, cloud computing, and wireless networks.
He is a member of ACM and a fellow of IEEE.

13

Bo Li is a Chair Professor in the Department of
Computer Science and Engineering, Hong Kong
University of Science and Technology. He held a
Cheung Kong Visiting Chair Professor in Shanghai
Jiao Tong University between 2010 and 2016, and
was the Chief Technical Advisor for ChinaCache
Corp. (NASDAQ:CCIH), a leading CDN provider.
He was an adjunct researcher at the Microsoft Re-
search Asia (MSRA) (1999-2006) and at the Mi-
crosoft Advanced Technology Center (2007-2008).
He made pioneering contributions in multimedia

communications and the Internet video broadcast, in particular Coolstreaming
system, which was credited as first large-scale Peer-to-Peer live video stream-
ing system in the world. It attracted significant attention from both industry
and academia and received the Test-of-Time Best Paper Award from IEEE
INFOCOM (2015). He has been an editor or a guest editor for over a two
dozen of IEEE and ACM journals and magazines. He was the Co-TPC Chair
for IEEE INFOCOM 2004.

He is a Fellow of IEEE. He received his PhD in the Electrical and Computer
Engineering from University of Massachusetts at Amherst, and his B. Eng.
(summa cum laude) in the Computer Science from Tsinghua University,
Beijing.

Li Chen received the B.E. degree, M.Phil. degree
and Ph.D. degree from The Hong Kong University
of Science and Technology (HKUST) in 2011, 2013
and 2018, respectively. He previously worked as a
Systems Researcher in Huawei Theory Lab. His re-
search interests include Data Center Networks, Dis-
tributed Systems, Vert Computing, Machine Learn-
ing and OAM. He now works at Zhongguancun
Laboratory.

Gong Zhang is a Principal Researcher in Huawei
2012 Labs. He has over 18 years research experience
in network communication and distributed system,
and has contributed more than 90 patents globally.
He was a team leader for future Internet and coop-
erative communication research since 2005, was in
charge of Advance Network Technology Research
Department in 2009, and led the System Group in
data mining and machine learning since 2012. His
recent research directions are network architecture
and large-scale distributed systems.

