
Two-Dimensional Learning Rate Decay: Towards
Accurate Federated Learning with Non-IID Data

Kaiwei Mo
Department of Computer Science

City University of Hong Kong
Hong Kong, China

kaimo6-c@my.cityu.edu.hk

Chen Chen
Theory Lab
Huawei HK

Hong Kong, China
chen.chen8@huawei.com

Jiamin Li
Department of Computer Science

City University of Hong Kong
Hong Kong, China

jiamin.li@my.cityu.edu.hk

Hong Xu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Hong Kong, China

henryxu@cse.cuhk.edu.hk

Chun Jason Xue
Department of Computer Science

City University of Hong Kong
Hong Kong, China

jasonxue@cityu.edu.hk

Abstract—In federated learning a global model is trained
with training data geographically distributed over a number of
clients. To reduce the communication cost over the expensive wide
area network, clients complete multiple local iterations before
synchronization. However, since the training data are non-iid,
such infrequent synchronization would compromise the accuracy
after model convergence.

In order to tackle this problem, we propose Two-Dimensional
Learning Rate Decay (2D-LRD) in this paper, which aims
to improve the model performance by adaptively tuning the
learning rate on two dimensions: round-dimension and iteration-
dimension during the model training. That is, we gradually
decrease the learning rate and decrease the learning rates of
local iterations in a synchronization round with different speeds.
Based on our experiments and analysis, we find that the sum
of the inner product of round updates is a valuable signal for
learning rate tuning. We perform evaluation and demonstrate
that 2D-LRD can make great progress compared to the baseline
scheme.

I. INTRODUCTION

Federated learning (FL) [1], [2] is a new learning paradigm
where geographically distributed clients can join the training
process without sharing their own private data. In the FL
setting there are two main constraints: data privacy, limited
resources. Because data is generated locally and can not be
exchanged, the local data distribution on clients are different
from others, that is, in FL clients’ local datasets may not
be identically and independently distributed (i.e., non-IID).
Meanwhile, the network and compute resources on clients are
limited.

To protect the data privacy and save the communication cost,
in 2016, McMahan et al. proposed the FedAvg algorithm [2].
In the FedAvg method, clients do the local computation for
multiple iterations in a synchronization round. Nowadays, the
FedAvg is the most common method that is usually regarded
as the baseline method in FL in the literature.

In an attempt to handle the accuracy loss incurred by
non-IID data, some works focus on local or public datasets

sharing [3]–[5], and some explore the hyperparameters like
synchronization frequency [6], [7]. However, they violate
the data privacy constraints and their practicality is weak.
Meanwhile, in [8] the authors theoretically analyze that a
diminishing learning rate can improve model performance but
without providing a practical method to decrease the learning
rate. Therefore, we aim to find a method that is practical and
does not violate the constraints to tackle this problem.

In this work, we aim to decrease the learning rate during the
training period so as to reduce the accuracy loss, which is a
new approach in FL. The key insight we decrease learning rate
is that: a parameter’s local optima are varied across different
devices with non-IID distribution. Moreover, clients refine
model parameters for multiple iterations before synchroniza-
tion. For the above two reasons, the average of updates might
be inaccurate for global optimization, which compromises the
model accuracy. To eliminate the error and improve the model
performance, we can decrease the learning rates of iterations
which make an adverse effect for optimization. Meanwhile,
the accumulated error amplifies for the later iterations in a
synchronization round (Sec. II-B), thus we should decrease
learning rate with different speed in a round.

Based on theoretical and empirical analysis, we propose
2D-LRD, a federated optimization algorithm that addresses
the accuracy loss incurred by non-IID data. Our proposed
algorithm consists two part: first is to find a signal for
tuning the learning rate, second is to tune the learning rate.
For the first part, Plug’s procedure [9]–[11] forms the basis
of our diagnostic for convergence.For the second part, to
reduce the cumulative error, the learning rate is decreased by
multiplied with a decay coefficient considering two dimension:
synchronization round dimension and iteration dimension.

We implement 2D-LRD with PyTorch and evaluate its per-
formance on twelve clients, and the outcome shows that 2D-
LRD can improve the model performance without violating
FL’s constraints mentioned above. In our experiment, the

accuracy improvement ranges from 3.3% to 15.2% in our
evaluation compared with FedAvg method.

II. BACKGROUND AND MOTIVATION

A. Background for FL

Federated learning (FL) is a specialized ML technique
which collaboratively learns a prediction model across decen-
tralized devices with their local data [2]. With the complexity
of computing tasks and the requirement of users’ data privacy
protection, FL becomes more and more important. In FL,
clients compute parameters and gradients locally on private
data. Then, client gradients are periodically aggregated in
the server side to update the global model. In our work,
synchronization round is a round which contains multiple local
iterations performed before one global synchronization. In FL
the training usually adopts BSP (Bulk Synchronous Parallel)
[2].

In each FL client, models are trained in the similar ap-
proach as conventional distributed ML. Model parameters are
optimized with the local data by minizing the training error,
which is represented by loss function f(s, ω) (1). In (1), |D|
denotes the number of samples in the dataset. The common
optimization approach is mini-batch gradient descent where
data are divided into batches and trained iteratively.

ω∗ = argminL(ω) = argmin
1

|D|
∑
s∈D

f(s, ω). (1)

Unlike typical distributed machine learning, FL has two
distinct properties.
Decentralized clients. FL exploits the computation capacity
of heterogeneous devices, e.g. mobile phones and IoT devices.
The decentralized architecture makes communication cost ex-
tremely high [1], [2]. Therefore, parameter synchronization
is far less frequent compared with conventional distributed
machine learning. Without timely global parameter update,
clients training with their local data are more likely to fall into
premature stagnation, which downgrades the overall training
efficiency. Figure 1(b) depicts the test accuracy when the
synchronization frequency is adjusted from 1 to 30 and 300
iterations. When the frequency is 300, test accuracy is reduced
by 15% compared with distributed training.
Non-IID training data. FL is designed to train on heteroge-
neous datasets. Specifically, training data on each FL client
is not independent and identically distributed and cannot be
exchanged with other clients. Training performance on each
client could vary significantly if the local data is imbalanced in
size and statistical distribution. Yet it is proved that data bias
is deficient to training [3], [4]. Thus such non-iid property will
serverly hinder global model from approaching optimal result.

Fig. 1 presents the impact to FL training performance of
the two properties. In Fig. 1(a), when the synchronization
frequency is reduced from 1 to 300. The test accuracy is
downgraded by 15%. However, the communication overhead
decreases on account of infrequent synchronization. Fig. 1(b)
shows the test accuracy change when the data portion each

(a) test accuracy change when the
synchronization frequency changes.

(b) Test accuracy change when the
non-iid level changes.

Fig. 1. The FL task trains the LeNet-5 model using MNIST dataset. There
are two clients. The learning rate is 0.01 and batch size is 100.

TABLE I
THE DEFINITION OF VARIABLES IN ANALYSIS.

Variable Definition

θglobalj Parameter values of the global model
in the jth iteration.

θij Parameter values of the ith client’s model
in the jth iteration.

xk the input of the kth sample in a batch.
yk the output of the kth sample in a batch.
η Learning rate.
B the number of samples in a batch in FL system.
l(θ) the loss function of θ. In this analysis, we use the

quadratic loss function (l(θ) = 1
2
(θT x− y)2).

l′(θ) the gradient of l(θ) (l′(θ) = (θT x− y)x).

clients owns varies. The local data of each clients are dis-
tributed in the Dirichlet process [12], [13]. A smaller α value
means more imbalanced data distribution between the two
clients. Compared with IID training, the test accuracy drops
up to 0.26 when α is 0.01.

The non-negligible performance degradation proves that
violating the aforementioned properties to achieve a better
training accuracy is undesirable. We identify a new angle to
address the loss of accuracy in FL scenario. Through both
theoretical analysis and empirical experiments, we prove that
the loss of accuracy can be alleviated without data sharing.

B. Accuracy Loss Analysis

We will start with theoretical analysis of the loss of accu-
racy. Notations are listed in Table I. To simplify the analysis,
we consider a two-client FL scenario and compare it with
standalone training. We adopts quadratic loss function in our
analysis. The method of analysis is universal for all common
loss functions.

Here, we assume that model initialization, hyperparameters
are the same in both modes and SGD is applied. Moreover,
in each iteration, the data batch in standalone ML training
mode is the sum of the mini-batch data retrieved by the two
clients in FL. We suppose that the number of iterations in a
synchronization round is more than 2.

In the FL mode, the local update of two clients in the first
iteration of a sychronization round can be denoted as (2).

θ12 = θ11 − η · (
∑
l′(θ11)

B
), θ22 = θ21 − η · (

∑
l′(θ21)

B
). (2)

Similarly, for the second iteration, the local update is computed
based on the first update as follows.

θ13 = θ12 − η · (
∑
l′(θ12)

B
), θ23 = θ22 − η · (

∑
l′(θ22)

B
). (3)

In the standalone training mode, the data trained in the first
iteration should be the aggregation of the local data of two FL
clients. Therefore, the batch size is twice of the FL client’s.
The update of first and second iteration are as (4) and (5).

θglobal2 = θglobal1 − η · (
∑
l′(θglobal1)

2B
), (4)

θglobal3 = θglobal2 − η · (
∑
l′(θglobal2)

2B
). (5)

Since we assume model initialization are the same, the
initial parameters are same in both modes, as shown in (6).

θ11 = θ21 = θglobal1 . (6)

Meanwhile, the data trained in the first iteration are the
same in both modes. Given such condition, we can derive
the relationship between local updates and global updates as
follows. ∑

l′(θglobal1)

2B
· 2 =

∑
l′(θ11)

B
+

∑
l′(θ21)

B
. (7)

θ12 + θ22
2

= θglobal2 , (8)

This relationship indicates that the updates in standalone
mode is the average updates in FL mode. The model parame-
ters aggregated after first iteration would not diverge from the
true optima in standalone mode.

Though (8) is valid for the second iteration, the equality
in (6) between client local update and standalone update not
longer persists. Firstly, two FL clients owns different local
data and solely perform local updates within a synchronization
round. This leads to the first inequality. Meanwhile, standalone
training always update with complete data batch while FL
clients only have access to partial data. This, in turn, brings
the second inequality.

l′(θglobal2) = ((θglobal2)Txi − yi)xi
6= ((θk2)

Txi − yi)xi = l′(θk2),
(9)

and k can be 1 or 2.We can derive that∑
l′(θglobal2)

2B
· 2 6=

∑
l′(θ12)

B
+

∑
l′(θ22)

B
, (10)

so
θ13 + θ23 6= 2 · θglobal3 . (11)

In the following iterations, FL clients’ updates are further
localized and the equality in (8) is not valid. Since FL clients
do not have complete data batch, their updates are always
suboptimal within the synchronization round compared with
standalone training. Therefore, when clients train iteratively

over suboptimal intermediate results, the ultimate parameters
will diverge and increasingly accumulate training error.

We find that the aforementioned sub-optimal updates could
be allevaited by adjusting the learning rate. When the data
are not-IID, a smaller learning rate can reduce the impact of
localized training. If learning rate is introduced to (11), it can
be rewritten as follows.

θ12 − η · (
∑
l′(θ12)

B
) + θ22 − η · (

∑
l′(θ22)

B
)

6= 2 · (θglobal2 − η · (
∑
l′(θglobal2)

2B
)).

(12)

In (12), when η approaches 0, the average value of FL updates
is closer to the optimal result. The adjustment of learning rate
could control the deviation caused by local data training. This
provides a new angle in improving FL training to achieve the
true optima.

Due to inconsistent landscape concavity of the loss func-
tions on different clients, the model parameters aggregated
after multiple local iterations would diverge from the true
optimum that should be reached after the same number of
iterations with timely (i.e., once-per-iteration) synchronization.
To reduce the extent of such divergence and attain a better
model performance, an intuitive idea is: speculatively reducing
the step size in the local iterations expect the first one in a
synchronization round, especially for the later ones where the
accumulated error amplifies.

Then, we conduct a preliminary experiment to validate
our idea mentioned in the last paragraph. Training model
LeNet-5 (non-convex) and SVM (convex) [14] are evaluated.
Lenet-5 is trained using CIFAR-10 dataset1 with 10 classes
in total. In each experiment, the learning rate of each client
are initialized to the same value (both are 0.01). To clearly
show the effectiveness of adjusting learning rate, training and
testing are conducted simultaneously to evaluate the model
performance. We compare our idea with the results in constant
learning rate. Ours set the learning rate of local iteration
except the first iteration to 0 starting from the 100th/1000th
epoch. Figure 2 depicts comparison of the test accuracy curves
and the value a randomly-selected parameter. In the SVM
experiment, the accuracy is improved from 59% to 65% after
tuning at epoch 100. In the LeNet-5 experiment, the accuracy
is improved from 54% to 61% after tuning at epoch 1000. Both
parameter values in two experiments change greatly, especially
for the experiment applied with SVM, from 0.05 to about 0.8.

III. ADAPTIVE LEARNING RATE TUNING

In this section, we discuss our proposed 2D-LRD algorithm
by answering two primary questions, when to the tune learning
rate and how to tune the learning rate.

A. Signal to Tune Learning Rate

Learning rate controls the speed at which a model learns
the problem. The theoretical analysis in section II-B already
shows that a smaller learning rate could effectively eliminate

1http://www.cs.toronto.edu/ kriz/cifar.html

(a) SVM, tuning at epoch 100. (b) LeNet-5, tuning at epoch 1000.

Fig. 2. We set up experiments by training models with 2 clients. It seems
that the parameter values change greatly , and the models perform better. The
dashed line show the measured variables without decreasing learning rate.

Algorithm 1: Diagnosis for Convergence (Server)
input : initial parameter value θ0, average round

updates g1,g2,..., observation window size
o >0, local iteration ID k >0

output: decrease times d, global parameters θr
. initialization

1 S, g0, r, r0, d← 0 ; . r is synchronization

round ID, and r0 is the ID of the

synchronization round when the

hyperparameter d was last modified.

2 Procedure Aggregate(θ1k,θ2k...,θnk)
3 r ← r + 1;
4 θr ← 1

n

∑n
i=1 θ

i
k;

5 gr ← θr − θr−1;
6 S ← S + grgr−1;
7 if r > o+ r0 and S < 0 then
8 d← d+ 1 ; . every time the model is

detected in the stationary phase,

decrease times plus one.

9 S ← 0;
10 r0 ← r;
11 end
12 return θr, d

some of training loss caused by FL clients. However, a smaller
learning rate will largely extend the training time as it takes
more iterations to converge. Therefore, we adopt a diagnostic
algorithm to determine the proper timing to adjust learning
rate.

In the early training stage, training loss might oscillate and
parameter values are likely to change a lot as the processed
training data is small and highly variant, which is called tran-
sient phase. When the model starts to converge and stabilize, it
transits to stationary phase. We observe that phase transition
also presents in FL scenario. Yet, due to the non-IID data
and low synchronization frequency, entering stationary phase
also indicates client model stagnating in sub-optimal parameter
values [15]. Decreasing learning rate during phase transition
could avoid training error accumulating in the subsequent
iterations beforehand.

We find Pflug’s procedure could promptly identify which

Fig. 3. Two parameter synchronization round gradients in SVM. When the
model is in a stationary phase, the updates of adjacent rounds are mostly in
the opposite direction.

phase clients enters [9]–[11]. The key idea of Pflug’s proce-
dure is to keep a running sum of the inner product of two
consecutive synchronization round gradients gn−1gn. In the
transient phase the gradients are roughly to the same direction,
and thus their inner product is positive. In the stationary phase,
the training process oscillates around a single point and the
gradients point to different directions [15], which represents
in Fig. 3, making the inner product negative. Therefore, when
the summation is positive, the model is in the transient phase;
when it becomes negative values, then it enters stationary
phase. Pflug’s procedure proves to be an effective indicator
for phase transition in [11].

During each gradient aggregation, servers will actively
compute the sum S of two consecutive gradient inner product.
Simply considering a single S value could lead to frequent
learning rate decreasing. An observation window is added to
control the frequency of adjusting learning rate.

B. How to Tune Learning Rate

Upon stationary phase transition, we adjust learning rate
using Two-Dimensional Learning Rate Decay (2D-LRD) al-
gorithm.
Two-Dimensional Learning Rate Decay

We propose a Two-Dimensional Learning Rate Decay (2D-
LRD) algorithm which considers both synchronization round
dimension and iteration dimension. We introduce a decay
coefficient as defined in (13), which incorporates both round-
dimension decay α and iteration-dimension decay β. Learning
rate will be reduced by the coefficient whenever a transition
to stationary phase is detected.

decay coefficient = αβ . (13)

Decay in synchronization round-dimension decay α can
reduce learning rate incrementally so that decay efficient
can approach zero and completely eliminate training error.
Iteration-dimension decay β is designed to adjust the learning
rate of each iteration within the same sychronization round.
As proven before, when the model trains for more iteration
within a synchronization round in FL, the training error
accumulates and the parameters gradually deviate from the
optimal value, and the later iterations in a synchronization

Algorithm 2: Tune Learning Rate (Client)
input : synchronization frequency τ > 0, initial

parameter value θ0, initial learning rate η0,
attenuation constant C >0

1 d, k ← 0; . Initialization. k is local

iteration ID

. run Procedure LocalCompute once in each

local iteration.

2 Procedure LocalCompute(k)
3 α← getRoundDecayRatio(d);
4 β ← k%τ ;
5 η ← η0 × αβ ;
6 Compute local update uik;
7 θik ← θik−1 + η × uik ; . ui

k:local update in

kth iteration on the ith client.

8 k ← k + 1;
9 if k%τ == 0 then

10 θr, d← server_node.Aggregate(θik);
. synchronize global parameters θr
and updates the d.

11 end
12 Procedure getRoundDecayRatio(d)
13 if C ∗ d < 1 then
14 α← (1− C × d);
15 else
16 α, τ ← 1; . when the hyperparameter d

is large enough, turning to timely

synchronization.
17 end
18 return α

round would generate a greater error. Therefore, β serves for
exponentially reducing learning rate so that it could offset
the accumulated training error. 2D-LRD enables learning rate
adjustment controlled by both the training performance within
a synchronization round and across different rounds.

Then our problem now becomes how to determine the value
of the decay coefficient. When detecting phase transition, the
number of phase transition d is updated and is used to compute
the round-dimensional decay. The larger d is, the more decay
learning rate should have. Meanwhile, an attenuation constant
C is added to find control the decay rate. When C×d is smaller
than 1, learning rate decay is set to 1 − C × d. Otherwise, a
large product indicates there are frequent phase transition and
sole local computation could not serve the need to find the true
optimal results. Then, the synchronization frequency is τ is set
to 1 so that model will be trained with timely synchronization.
As for iteration-dimensional decay, β increases linearly with
the number of iterations completes within a synchronization
round, which conforms with our analysis in Sec. II. Algorithm
2 presents the details of 2D-LRD.

IV. PERFORMANCE EVALUATION

In this section, we deploy the proposed 2D-LRD algorithm
in a 12-client FL cluster and evaluate its performance.

TABLE II
COMBINATIONS OF HYPERPARAMETERS, MODEL, AND DATASET.

Hyperparameter

η0 τ o Model Dataset

0.01 10 500 LeNet-5 CIFAR-10
0.05 10 300 LSTM KWS2

0.05 10 10 LSTM ag news3

0.01 10 50 CNN EMnist4

A. Experiment Setup

Dataset, model and hyperparameters. We conduct exper-
iments on different training models and datasets to prove
the generality of 2D-LRD. Similar to [3], here training data
are evenly partitioned so that the data are severely non-
IID. Meanwhile, the hyperparameters (initial learning rate η0,
synchronization frequency τ , observation window size o) are
initialized to different values to prove the robustness of the
algorithm. Table II shows details of each experiment setup.

In addition, the default batch size and attenuation constant C
in each case are set to 100 and 0.2 respectively. The number
of samples selected in each epoch is the same as the total
number of samples in the training set.
Scheme compared. We compare 2D-LRD with the baseline
approach which applies FedAvg algorithm and then compare
with two other schemes AD and AT to highlight 2D-LRD’s
benefit.

1) FedAvg FedAvg is a common basedline algorithm in
FL [2]. Clients conduct local computation for several
iterations and then synchronize with the servers. No
learning rate adjustment is conducted during training
process.

2) All-Decreasing (AD) Every time the model is entering
stationary phase, all the learning rates of local iterations
will be multiplied by a decay coefficient. The decay co-
efficient is a constant. Here we set the decay coefficient
as 0.8 in the evaluation.

3) Additive-Tuning (AT) Every time the model is entering
stationary phase, the learning rate starting from the
second iteration will be decreased by a decay value same
as the round-dimensional decay in 2D-LRD.

B. Visual Behavior

We first evaluate 2D-LRD with FedAvg which does not ad-
just learning rate. Figure 4 show the test accuracy performance
on the aforementioned four experiment setup. In the figure, we
can see that our 2D-LRD outperforms the FedAvg algorithm
obviously in all experiments. This is because we eliminate
the error by decreasing the learning rate. In particular, we
further make a quantitative performance comparison between

2KeyWord Spotting dataset (KWS), a subset of the Speech Commands
dataset [16]

3Training set contains 4 types of news and each kind of news contains
30,000 pieces, and test set contains 12,000 pieces of news [17]

4an extension of Mnist dataset, which contains 814,255 characters. 62
unbalanced classes [18]

(a) Cifar10 (b) EMnist

(c) ag news (d) KWS

Fig. 4. Test accuracy curves under 2D-LRD and FedAvg.

TABLE III
HIGHEST ACCURACY (%) AFTER CONVERGENCE.

Scheme Dataset
EMnist Cifar10 KWS ag news

FedAvg 78.8 45.3 76.1 76.3
2D-LRD 81.4 49.4 87.4 87.9

2D-LRD and FedAvg in Table III, which lists the highest
accuracy attained when the training model has converged using
the FedAvg algorithm. Because we set different datasets in
different experiments, we use the datasets’ names to represent
combinations in Table III. In the evaluation, when the accuracy
is not improved within 50 epochs, we judge the convergence
of the model. According to Table III, accuracy improvement
ranges from 3.3% to 15.2% in the evaluation, which show the
importance of avoiding premature stagnation.

Then, we compare 2D-LRD’s performance with AD and
AT to further highlight the improvement of 2D decay design.
Figure 5(a) depicts the test accuracy curves of different ap-
proach. AD converges more slowly than 2D-LRD and AT as it
decreases learning rate of the first iteration within a round. Yet
we prove that the first iteration will not produce any training
error. Though AT skips the first iteration, it adopts additive
decay. 2D-LRD leverages both the iteration-dimension and
round-dimension decay to accelerate the decay rate.

Figure 5(b) plots the sampled four learning rate changes
across the synchronization rounds. Each line i in the Figure
5(b) represents the learning rate of the ith iteration in each
synchronization round. The learning rate of the first iteration
(blue) remains the same throughout the training process, which
conforms with our theoretical analysis. Others decrease to
nearly half of its inital learning rate before the first 1000
rounds. The learning rate becomes 0 roughly from the 1500
round and the training synchronization frequency is adjusted
to 1 simultaneously.

(a) test accuracy

(b) learning rate and decrease times (d)

Fig. 5. Test accuracy under 2D-LRD, AT and AD with the KWS dataset, and
the first four learning rates in a synchronization round under 2D-LRD.

V. RELATED WORK

Federated learning allows multiple clients to collabora-
tively train a model without data sharing. Existing works
on federated learning mainly focus on two improving its
communication efficiency and tackle statistical heterogeneity.
We classify these studies into two parts:

Communication efficiency. In the federated learning set-
ting, devices have limited communication capabilities, thus
improving communication efficiency is important. In [2], the
Federated Averaging (FedAvg) is presented that allows clients
to perform local training of multiple epochs, which further
reduces the number of communication rounds by averaging
model weights from the worker nodes. In [1], [19], the authors
proposed structured and sketched updates to decrease the
completion time of each communication round. Nishio et
al. [20] proposed a resource-aware selection algorithm that
maximizes the number of participating devices in each round.

Statistical heterogeneity. Non-IID data is annoying since
it compromises model performance. In [3], some common
samples are copied to all worker nodes, and there are also some
approaches sharing some other data like local loss function
values to decide whether to continue local training or server-
side proxy data [4], [5]. Furthermore, in [4], the authors use
GAN models to locally generate some auxiliary data. Unlike
data sharing, some works propose to add a specific momentum
to the optimizer [21] or an extra regularizing term to the loss
function [22] so as to reduce the negative impact of non-
IID training data. In addition, some works concentrate on
synchronization frequency tuning [6], [7].

VI. CONCLUSION

In this paper, we propose 2D-LRD, a practical and privacy-
preserving FL scheme to improve the model accuracy in non-
iid scenario. Through theoretical analysis, we identify that
model will diverge from the true optimum in the iterative
training when only computation on local data is allowed.
Different from the conventional solutions training data vio-
lating the privacy constraints, 2D-LRD introduces an effective
learning rate tuning algorithm to dynamically adjust learning
rate whenever training enters premature stagnation phase. It
uses Pflug’s procedure to determine the training phase. Then,
learning rate decays incrementally in synchronization round
dimension and exponentially in iteration dimension to accel-
erate the amendment of diverging parameters. Experimental
results demonstrate that the proposed algorithm achieves an
up-to-15.2% test accuracy improvement compared with the
FedAvg.

REFERENCES

[1] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[2] McMahan Brendan, Moore Eider, Ramage Daniel, Hampson Seth, and
y Arcas Blaise Aguera. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282. PMLR, 2017.

[3] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

[4] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi
Bennis, and Seong-Lyun Kim. Communication-efficient on-device
machine learning: Federated distillation and augmentation under non-
iid private data. arXiv preprint arXiv:1811.11479, 2018.

[5] Li Huang, Yifeng Yin, Zeng Fu, Shifa Zhang, Hao Deng, and Dianbo
Liu. Loadaboost: Loss-based adaboost federated machine learning with
reduced computational complexity on iid and non-iid intensive care data.
Plos one, 15(4):e0230706, 2020.

[6] Jianyu Wang and Gauri Joshi. Adaptive communication strategies to
achieve the best error-runtime trade-off in local-update sgd. arXiv
preprint arXiv:1810.08313, 2018.

[7] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung,
Christian Makaya, Ting He, and Kevin Chan. Adaptive federated
learning in resource constrained edge computing systems. IEEE Journal
on Selected Areas in Communications, 37(6):1205–1221, 2019.

[8] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua
Zhang. On the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019.

[9] Georg Ch Pflug. Non-asymptotic confidence bounds for stochastic
approximation algorithms with constant step size. Monatshefte für
Mathematik, 110(3-4):297–314, 1990.

[10] George Yin. Stopping times for stochastic approximation. In Modern
Optimal Control: A Conference in Honor of Solomon Lefschetz and
Joseph P. LaSalle, pages 409–420, 1989.

[11] Jerry Chee and Panos Toulis. Convergence diagnostics for stochastic
gradient descent with constant learning rate. In International Conference
on Artificial Intelligence and Statistics, pages 1476–1485, 2018.

[12] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the ef-
fects of non-identical data distribution for federated visual classification.
arXiv preprint arXiv:1909.06335, 2019.

[13] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Gree-
newald, Trong Nghia Hoang, and Yasaman Khazaeni. Bayesian non-
parametric federated learning of neural networks. arXiv preprint
arXiv:1905.12022, 2019.

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[15] Noboru Murata. A statistical study of on-line learning. Online Learning
and Neural Networks. Cambridge University Press, Cambridge, UK,
pages 63–92, 1998.

[16] Pete Warden. Speech commands: A dataset for limited-vocabulary
speech recognition. arXiv preprint arXiv:1804.03209, 2018.

[17] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolu-
tional networks for text classification. In Advances in neural information
processing systems, pages 649–657, 2015.

[18] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik.
Emnist: Extending mnist to handwritten letters. In 2017 International
Joint Conference on Neural Networks (IJCNN), pages 2921–2926. IEEE,
2017.

[19] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated
optimization: Distributed optimization beyond the datacenter. arXiv
preprint arXiv:1511.03575, 2015.

[20] Takayuki Nishio and Ryo Yonetani. Client selection for federated
learning with heterogeneous resources in mobile edge. In ICC 2019-
2019 IEEE International Conference on Communications (ICC), pages
1–7. IEEE, 2019.

[21] Chengjie Li, Ruixuan Li, Haozhao Wang, Yuhua Li, Pan Zhou, Song
Guo, and Keqin Li. Gradient scheduling with global momentum
for non-iid data distributed asynchronous training. arXiv preprint
arXiv:1902.07848, 2019.

[22] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. Federated optimization in heterogeneous
networks. arXiv preprint arXiv:1812.06127, 2018.

	Introduction
	Background and Motivation
	Background for FL
	Accuracy Loss Analysis

	Adaptive Learning Rate Tuning
	 Signal to Tune Learning Rate
	How to Tune Learning Rate

	Performance Evaluation
	Experiment Setup
	Visual Behavior

	Related work
	Conclusion
	References

