
Communication-Efficient Federated Learning
with Adaptive Parameter Freezing

Chen Chen1, Hong Xu2, Wei Wang3, Baochun Li4, Bo Li3, Li Chen1, Gong Zhang1

1Huawei Research Hong Kong 2CUHK 3HKUST 4University of Toronto

Abstract—Federated learning allows edge devices to collab-
oratively train a global model by synchronizing their local
updates without sharing private data. Yet, with limited network
bandwidth at the edge, communication often becomes a severe
bottleneck. In this paper, we find that it is unnecessary to always
synchronize the full model in the entire training process, because
many parameters gradually stabilize prior to the ultimate model
convergence, and can thus be excluded from being synchronized
at an early stage. This allows us to reduce the communication
overhead without compromising the model accuracy. However,
challenges are that the local parameters excluded from global
synchronization may diverge on different clients, and meanwhile
some parameters may stabilize only temporally. To address these
challenges, we propose a novel scheme called Adaptive Parameter
Freezing (APF), which fixes (freezes) the non-synchronized stable
parameters in intermittent periods. Specifically, the freezing
periods are tentatively adjusted in an additively-increase and
multiplicatively-decrease manner, depending on if the previously-
frozen parameters remain stable in subsequent iterations. We
implemented APF as a Python module in PyTorch. Our extensive
array of experimental results show that APF can reduce data
transfer by over 60%.

I. INTRODUCTION

Federated learning (FL) [26], [28] emerges as a promising
paradigm that allows edge clients (e.g., mobile and IoT devices)
to collaboratively train a model without sharing their local
private data. In FL, there is a central server maintaining
the global model, and edge devices synchronize their model
updates in rounds of communication. However, the Internet
connections have limited bandwidth [1], which makes the
parameter synchronization between the edge and server an
inherent bottleneck that severely prolongs the training process.

A rich body of research works have been proposed to reduce
the communication amount for distributed model training. For
example, some works propose to quantize the model updates
into fewer bits [5], [26], [33], and some other works propose to
sparsify local updates by filtering out certain values [16], [22],
[36], [37]. Nonetheless, those works assume that all the model
parameters should be synchronized indiscriminately in each
communication round, which we find is unnecessary. In our
testbed measurements, many parameters become stable long
before the model converges; after these parameters reach their
optimal values, the subsequent updates for them are simply
oscillations with no substantial changes, and can indeed be
safely excluded without harming the model accuracy.

Therefore, an intuitive idea we want to explore is, can we
reduce FL communication amount by no longer synchronizing
those stabilized parameters? Realizing this intuition raises

two challenges: (1) How to efficiently identify the stabilized
parameters in resource-constrained edge devices? (2) Can we
preserve the model convergence accuracy after eliminating the
stabilized parameters from being synchronized?

Regarding the first challenge, we propose a stability metric
called effective perturbation to quantify—from a historical point
of view—how closely the consecutive updates of a parameter
follow an oscillation pattern. With an exponential moving
average method, we make the effective perturbation metric
efficient in computation and memory consumptions, and rely
on it to identify the stable parameters.

For the second challenge, we experimentally find that some
strawman designs do not work well. A straightforward method—
having the stabilized parameters updated only locally—fails to
guarantee convergence, because the local updates on different
clients may diverge and cause model inconsistency. Another
method that permanently fixes (i.e., freezes) the stabilized
parameters can ensure model consistency yet at the cost of
compromised model accuracy: some parameters may stabilize
only temporally during the training process; after being frozen
prematurely, they are unable to reach the true optima.

Based on the above explorations, we design a novel mech-
anism, Adaptive Parameter Freezing (APF), that adaptively
freezes and unfreezes parameters with the objective of reducing
communication volume while preserving convergence. Under
APF, each stable parameter is frozen for a certain number of
rounds and then unfrozen to check whether they need further
training or not; the length of such freezing period is additively
increased or multiplicatively decreased based on whether that
parameter is still stable after resuming being updated. This way,
APF enables temporarily-stable parameters to resume training
timely while keeping the converged parameters unsynchronized
for most of the time. Additionally, for large models that
are over-parameterized [30], [41], we design an extended
version of APF, called Aggressive APF, that can attain a much
larger performance improvement by allowing some unstable
parameters to enter frozen state randomly.

We implement APF as a pluggable Python module named
APF_Manager atop the PyTorch framework. The module
takes over the model update from edge clients and com-
municates only the non-frozen components with the server.
Meanwhile, it also maintains the freezing period of each
parameter based on the metric of effective perturbation. Our
evaluation on Amazon EC2 platform demonstrates that, APF
can reduce the overall transmission volume by over 60%
without compromising the model convergence, outperforming

standard FL as well as a series of sparsification methods in
the literature. Moreover, in some cases APF even enhances the
convergence accuracy because parameter freezing can avoid
over-fitting and improve the model generalization capability.
Finally, our breakdown measurements show that the computa-
tion and memory overheads of APF are negligible compared
to its benefits in training speedup.

II. BACKGROUND

Federated Learning Basics. Given a neural network model,
the objective of model training is to find the optimal parameters
ω? that can minimize the global loss function, F (ω), over
the entire training dataset D. Let f(s, ω) be the loss value
computed from sample s with parameters ω, then that objective
can be expressed as:

ω?=arg minF (ω)=arg min
1

|D|
∑

s∈D
f(s, ω). (1)

A common algorithm to find ω? is stochastic gradient descent
(SGD) [27]. SGD works in an iterative manner: in iteration
k, ωk is updated with a gradient gξk that is calculated from a
random sample batch ξk, i.e., ωk+1 = ωk − ηgξk .

In many real-world scenarios, training samples are privacy-
sensitive and dispersed on distributed clients like edge devices
(e.g., cellphones and IoT equipments) or independent organi-
zations (e.g., banks and hospitals). To train models without
centralizing such private data, an increasingly popular technique
is federated learning (FL) [8], [26], [28], [43], under which
the clients can compute model updates directly with their local
data samples. More specifically, in FL there is a central server
maintaining the global model, and clients remotely update the
global model parameters in communication rounds [26], [28].
In each round, clients pull the latest model parameters from
the central server and, after locally refining those parameters
for multiple iterations, push their updated model parameters
back to the server for global aggregation.

Communication Bottleneck in FL. A salient performance
bottleneck for FL is the communication between clients and
central server [7], [26], [28]. As an enabling technique that
supports apps like Google Gboard with global user [39], FL
entails that edge clients need to communicate with the server
through the Internet, where the average bandwidth is less than
10Mbps globally [1]. When training LeNet-5 (a classical con-
volutional neural network (CNN) for image classification [27])
or ResNet-18 under a FL setup with 50 clients (see Sec. VI-A
for detailed setup), we find that over half of the training time
is spent on parameter communication. Therefore, it is of great
significance to reduce the communication volume in FL.

There has been much research on communication compres-
sion in distributed learning scenarios. They can essentially be
categorized into two types: quantization and sparsification. To
be concise, here we only summarize their key insights and
defer the detailed description of each category to Sec. VII.
Quantization means to use lower bits to represent gradients
which is originally represented in 32 or 64 bits [5], [26], [33].
Sparsification means to reduce the number of elements that

are transmitted in model aggregation [16], [22], [36]. Two
typical sparsification methods proposed recently are Gaia [22]
and CMFL [37]. In Gaia, only those parameters that change
significantly enough can be synchronized, and in CMFL, only
those local updates whose variation direction is consistent
enough to the global one are reported.

Nonetheless, the above communication compressing methods
fall short in that they treat the model convergence process
as a black-box: they implicitly assume that global synchro-
nizations shall be conducted for all the parameters in all
the communication rounds, and then focus on reducing the
transmission cost more from an engineering perspective—either
by adopting lower-bit representation or by locally filtering
out some valueless contents. However, there in fact exists
an uncharted territory: is it necessary to synchronize all the
parameters in all the rounds to attain model convergence? If
there exist some parameters that do not require synchronization
during certain periods, we can fundamentally eliminate their
communication cost. In the next section, we will explore that
with both theoretical analysis and testbed measurements.

III. MOTIVATION

In this section, we seek to find out whether each parameter
needs to be synchronized in each round. We first theoretically
analyze how parameters evolve during the model training
process, and then verify that with testbed measurements. Finally
we summarize our research objectives and the challenges.

Theoretical Analysis. In general, during the iterative model
training process, the model parameters go through a transient
phase where their values vary dramatically, and move towards
a stationary phase where their values oscillate [29], [42].
Before testbed measurements, we first prove a theorem to
mathematically describe the two phases, which indicates that
the mean squared error of SGD has a bias term originating
from distance to the starting point, and a variance term from
noise in stochastic gradients.

Assumption 1. (Strong Convexity.) The global loss function
F (ω) is µ−strongly convex, i.e.,

F (y) ≥ F (x) +∇F (x)T (y − x) +
µ

2
||y − x||2.

An equivalent form of µ−strong convexity is

(∇F (x)−∇F (y))T (x− y) ≥ µ||x− y||2.

Assumption 2. (Bounded Gradient.) The stochastic gradient
calculated from a mini-batch ξ is bounded as E||gξ(ω)||2 ≤ σ2.

Theorem 1. Suppose F (ω) is µ-strongly convex, σ2 is the
upper bound of the variance of ||∇F (ω)||2, then there exist
two constants A = 1− 2µη and B = ησ2

2µ , such that

E(||ωk − ω?||2) ≤ Ak||ω0 − ω?||2 +B.

Proof.

||ωk+1 − ω?||2 = ||ωk − ω? + ωk+1 − ωk||2

= ||ωk − ω? − ηgξk(ωk)||2

= ||ωk−ω?||2−2η〈ωk−ω?, gξk(ωk)〉+η2||gξk(ωk)||2.

0 200 400 600 800 1000
Epoch

-0.3

-0.2

-0.1

0.0

0.1
Pa

ra
m

et
er

 V
al

ue

Param-1
Param-2
Accuracy

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Fig. 1: Evolution of two randomly se-
lected parameters during LeNet-5 train-
ing (with the test accuracy for reference.)

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
St

ep
pi

ng
 R

at
e

Fig. 2: Variation of the average effec-
tive perturbation of all the parameters
during the LeNet-5 training process.

con
v1-

w

con
v1-

b

con
v2-

w

con
v2-

b
fc1

-w
fc1

-b
fc2

-w
fc2

-b
fc3

-w
fc3

-b
0

40

80

120

160

200

Pa
ra

m
et

er
-S

ta
bi

liz
ed

 E
po

ch
 #

Fig. 3: Average epoch number where pa-
rameters in different layers become stable
(error bars show the 5th/95th percentiles).

Taking expectation conditioned on ωk we can obtain:

Eωk
(||ωk+1 −ω?||2) = ||ωk − ω?||2 − 2η〈ωk−ω?,∇F (ωk)〉

+ η2Eωk
(||gξk(ωk)||2).

Given that F (ω) is µ−strongly convex, we have

〈∇F (ωk), ωk − ω?〉 = 〈∇F (ωk)−∇F (ω?), ωk − ω?〉
≥ µ||ωk − ω?||2.

Applying total expectation, we can obtain

E(||ωk+1−ω?||2)=E||ωk − ω?||2 − 2η〈E(ωk − ω?),∇F (ωk)〉
+ η2E(||gξk(ωk)||2)

≤ (1− 2µη)E||ωk − ω?||2 + η2σ2.

Recursively applying the above and summing up the resulting
geometric series gives

E(||ωk−ω?||2)≤(1−2µη)k||ω0 − ω?||2+

k−1∑
j=0

(1− 2µη)jη2σ2

≤ (1− 2µη)k||ω0 − ω?||2 +
ησ2

2µ
.

This completes the proof.

As implied by Theorem 1, in the transient phase, ω
approaches ω? exponentially fast in the number of iterations,
and in the stationary phase, ω oscillates around ω?. Therefore,
model parameters should change remarkably in the beginning
and then gradually stabilize. We further confirm it with testbed
measurements.

Testbed Measurements on Parameter Variation. We train
LeNet-5 [27] locally on the CIFAR-10 dataset with a batch size
of 100, and Fig. 1 shows the values of two randomly sampled
parameters1 after each epoch, along with the test accuracy2 for
reference. In the figure, the two parameters change significantly
in the beginning, accompanied by a rapid rise in the test
accuracy; then, as the accuracy plateaus, they gradually stabilize
after around 200 and 300 epochs, respectively.

1We also find certain parameters not following the pattern in Fig. 1 and
will discuss them later in Sec. IV-B with Fig. 7.

2For clarity, we present the best-ever accuracy instead of instantaneous
accuracy (which fluctuates drastically) in this paper.

In standard FL scheme [26], [28], parameters are still
updated regularly even after they stabilize. Although their
values barely change in later rounds and their updates are
mostly oscillatory random noises, they still consume the same
communication bandwidth as before. Such communication cost
is largely unnecessary, because machine learning algorithms
are resilient against parameter perturbations [14], [17], [22],
which can be confirmed by the success of recent advances like
Dropout [4], [19], [35] and Stochastic Depth [23]. Thus, to
reduce communication cost in FL, intuitively we should avoid
synchronizing the stabilized parameters.

Statistical Analysis on Parameter Stability. To see if the
parameter variation pattern in Fig. 1 generally holds for other
parameters, we conduct a statistical analysis of all the LeNet-5
parameters over the entire training process. To begin with,
we quantitatively describe a parameter’s stability using a
new metric called effective perturbation. It represents how
a parameter’s value changes out of the zigzagging steps,
i.e., how the consecutive updates counteract with each other.
Effective perturbation is defined over an observation window
that contains a certain amount of consecutive model updates
in the recent past. Formally, let uk represent parameter update
in iteration k (i.e., uk=ωk−ωk−1), and r be the number of
recent iterations the observation window contains, then P rk , the
effective perturbation at iteration k, can be defined as:

P rk =
||
∑r−1
i=0 uk−i||∑r−1

i=0 ||uk−i||
. (2)

Clearly, the more stable a parameter is, the more conflicting
its consecutive updates are, and the smaller its effective
perturbation is. If all the model updates are of the same
direction, P rk would be 1; if any two consecutive model updates
well counteract each other, then P rk would be 0. Thus, with
a small threshold on effective perturbation, we can identify
those stabilized parameters effectively.

We then look at the evolution of the average effective
perturbation of all the parameters during the LeNet-5 training
process, as depicted in Fig. 2, where the observation window
W spans one epoch (i.e., 500 updates). We observe that the
average effective perturbation decays rapidly at first and then
very slowly after the model converges at around epoch-200 (see

the accuracy result in Fig. 1), suggesting that most parameters
gradually stabilize before the model converges.

Granularity of Parameter Manipulation: Tensor or Scalar?
By now careful readers may have noticed that a parameter
in our figure presentation means a scalar3, yet admittedly it
is more concise to represent a neural network model at the
granularity of tensors (e.g., the weight or bias matrix in a
CNN model) instead of a vast array of scalars. Thus one may
ask: do all scalars in the same tensor share the same stabilizing
trend, so that we can directly deal with tensors instead?

To answer this question, we group all the scalar parameters
according to the tensor they belong to, as depicted in Fig. 3.
In LeNet-5 there are 10 tensors, e.g., conv1-w—the weight
tensor in the first convolutional layer, and fc2-b—the bias
tensor in the second fully connected layer. For each tensor, we
present the average epoch number at which its scalar values
become stable. Here a scalar is deemed stable when its effective
perturbation drops below 0.01, and the error bars in Fig. 3
represent the 5th and 95th percentiles. As indicated by Fig. 3,
different tensors exhibit different stability trends; meanwhile,
there also exist large gaps between the 5th and 95th error
bars of each tensor, implying that parameters within the same
layer may exhibit vastly different stabilization characteristics.
This is in fact reasonable, because some features of the input
samples may be easier to learn than the rest, and thus in a
neural network layer, some scalar parameters move faster in
their optimal dimensions and would converge faster [42]. This
is essentially a property called non-uniform convergence [22].
Therefore, the granularity for parameter synchronization control
needs to be individual scalars instead of full tensors.

Objective and Challenges. Our objective in this work is to
reduce the overall transmission volume for FL while preserving
the accuracy performance. Motivated by above observations,
an intuitive idea is to identify stabilized parameters and avoid
synchronizing them in the remaining training process.

Nonetheless, there are two immediate challenges for making
this intuition a reality. First, how to efficiently detect the
stabilized parameters in resource-constrained edge devices? It
would be impractical to maintain in memory all the historical
update snapshots within the observation window. Second, how
to guarantee model convergence when the seemingly stabilized
parameters are no longer synchronized? We address these
challenges in the next section.

IV. ADAPTIVE PARAMETER FREEZING

In this section, we present a novel mechanism called
Adaptive Parameter Freezing (APF) to reduce the transmission
volume in FL process with the model convergence validity
preserved. We first propose a resource-efficient metric to
identify those stabilized parameters (Sec. IV-A). Then, after
exploring some strawman solutions (Sec. IV-B), we elaborate
APF design details in Sec. IV-C.

0 200 400 600 800 1000
Communication Round

-0.2

-0.1

0.0

0.1

0.2

Pa
ra

m
et

er
 V

al
ue

Client-1
Client-2

(a) Parameter-1

0 200 400 600 800 1000
Communication Round

-0.1

0.0

0.1

0.2

0.3

Pa
ra

m
et

er
 V

al
ue

Client-1
Client-2

(b) Parameter-2

Fig. 4: When training LeNet-5 under a non-IID setup with two
clients, the local values of two randomly selected parameters
(stabilizing at around round-300 and then updated purely
locally) would diverge on different clients.

A. Identify Stabilized Parameters

Identifying stabilized parameters is the first step to eliminate
unnecessary parameter synchronization. Doing this on the
central server would incur additional communication cost
of sending the results back to clients. Thus, we choose to
perform parameter stability check on the client side. Given
the memory and computing-power limitations of edge devices,
calculating the effective perturbation defined in Eq. (2) is
resource prohibitive, as it requires each client to locally store
a series of model snapshots and process them frequently.

Effective Perturbation to Depict Parameter Stability in a
Practical Manner. To make our solution resource efficient, we
need to modify the definition of effective perturbation. First, to
reduce the computation cost, we relax the frequency of stability
check from once-for-per-round to once-for-multiple-rounds,
with the accumulated model updates between two consecutive
checks. This is feasible because a stabilized parameter would
remain so when observed at a coarser time granularity. Further,
to be memory-efficient, instead of maintaining a window of
previous updates, we adopt the Exponential Moving Average
(EMA) method to calculate effective perturbation with only
the latest model update maintained. For a parameter in the
Kth stability check, let ∆K represent the cumulative update
since the last check. Then the effective perturbation of this
parameter, PK , can be defined as:

PK =
|EK |
Eabs
K

, where EK = αEK−1 + (1− α)∆K ,

Eabs
K = αEabs

K−1 + (1− α)|∆K |.
(3)

Here EK is the moving average of the parameter updates, and
Eabs
K is the moving average of the absolute value of parameter

updates. The smoothing factor α is set close to 1. This way,
the nice properties of effective perturbation under the previous
definition of Eq. (2)—close to 1 if model updates are of the
same direction, and close to 0 if they oscillate—still hold
for PK yet at a much lower compute and memory cost. In
addition, decaying the earlier updates with EMA is sensible

3A scalar parameter is also called a coordinate in the research literature.

0 200 400 600 800 1000
Communication Round

0.0

0.2

0.4

0.6

0.8
A

cc
ur

ac
y

Full Synchronization
Partial Synchronization

Fig. 5: Partial synchronization causes
severe accuracy loss on non-IID data.

0 200 400 600 800 1000
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Full Synchronization
Naive Freezing
Frozen Parameter Ratio

0

0.2

0.4

0.6

0.8

1.0

Fr
oz

en
 P

ar
am

et
er

 R
at

io

Fig. 6: Permanent freezing also causes
accuracy loss.

0 100 200 300 400 500
Epoch

-0.3

-0.2

-0.1

0.0

0.1

Pa
ra

m
et

er
 V

al
ue

Param-1
Param-2

Fig. 7: The two sampled parameters stabilize
only temporarily between epoch 100 and 200.

because recent behavior is more significant. Therefore, in the
following, we determine a parameter as stable if its effective
perturbation under this new definition is smaller than a given
stability threshold.

Ideally, the stability threshold should be loose enough to
include all stabilized parameters (i.e., avoid false negatives),
and in the meantime be tight enough to not mistakenly include
any unstable parameters (i.e., avoid false positives). However,
we can not assume that the stability threshold is always set
appropriately. To be robust, we introduce a mechanism that
adaptively tunes the stability threshold at runtime: Each time
when most (e.g., 80%) parameters have been categorized as
stable, we decrease the stability threshold by one half. This
method is similar to learning rate decay. This way, the negative
effect of improper threshold values can be gradually rectified,
which will be verified later in Sec. VI-D.

B. Strawman Solutions and Key Design Principles

Given the stabilized parameters identified with the above
metric, how to exploit them so that we can reap communi-
cation reduction without compromising model convergence?
In this part, we explore some intuitive approaches and their
deficiencies, from which we derive a few key principles that a
valid solution must follow.

Deficiency of Partial Synchronization. To exploit the stabi-
lized parameters for communication compression, an intuitive
idea is to exclude them from synchronization (but still update
them locally), and only synchronize the rest of the model to
the central server. We find that such a partial synchronization
method may cause severe accuracy loss.

In typical FL scenarios, the local training data on an edge
client is generated under particular device environment or
user preference. Thus the local data is usually not identically
and independently distributed (i.e., non-IID) across different
clients [7], [26], [28]. This implies that the local loss function
F (ω) and the corresponding local optima ω? on different clients
are usually different [45]. Therefore, a parameter that is updated
only locally would eventually diverge to different local optima
on different clients; such inconsistency of unsynchronized
parameters would deteriorate the model accuracy.

To confirm this, we train the LeNet-5 model in a distributed
manner with non-IID data. There are two clients each with

5 distinct classes of the CIFAR-10 dataset, and stabilized
parameters are excluded from later synchronization. Fig. 4
shows the local variation of two randomly selected parameters:
Once they are excluded from global synchronization, their
values on different clients would diverge remarkably. The model
accuracy under such a partial synchronization method is further
revealed in Fig. 5: Compared to full-model synchronization,
there is an accuracy loss of more than 10%. Therefore, the
first principle our design must follow is that, stabilized (i.e.,
unsynchronized) parameters must be kept unchanged on each
client (Principle-1).

Deficiency of Permanent Freezing. Given Principle-1, another
intuitive method is to simply fix the stabilized parameters to
their current values. Such a permanent freezing method can
naturally prevent parameter divergence. However, when training
LeNet-5 with permanent freezing with two clients, we find
that the accuracy performance as depicted in Fig. 6 is still
suboptimal compared to full-model synchronization.

To understand the reasons behind we look into the parameter
evolution process during training. Interestingly, we find that
some parameters stabilize only temporarily. Fig. 7 showcases
two such parameters: they start to change again after a
transient stable period. In fact, parameters in neural network
models are not independent of each other. They may have
complex interactions with one another in different phases
of training [35], and this may cause a seemingly-stabilized
parameter to drift away from its current value (to ultimate
optimum). The permanent freezing solution, however, prevents
such parameters from converging to the true optimum once they
are frozen, which eventually compromises the model accuracy.
It is inherently difficult to distinguish the temporarily stabilized
parameters by devising a better stability metric based on local
observations, since their behavior before drifting is virtually
identical to that of those that truly converge. Hence, as another
principle (Principle-2), any effective solution must handle the
possibility of temporary stabilization.

C. Adaptive Parameter Freezing

To summarize, we learned two lessons from the previous
explorations. First, to ensure model consistency, we have to
freeze the non-synchronized stabilized parameters. Second, to
ensure that the frozen parameters can converge to the true

optima, we shall allow them to resume being updated (i.e.,
be unfrozen) at some point. Therefore, instead of freezing
stabilized parameters forever, we freeze them only for a certain
time interval, which we call freezing period. Within the freezing
period, the parameter is fixed to its previous value, and once
the freezing period expires, that parameter should be updated
as normal until it stabilizes again.

Control Mechanism of Freezing Period. A remaining ques-
tion is, given that there is no complete knowledge of the
model convergence process a prior, when to unfreeze a frozen
parameter? Or how to set the freezing period once a parameter
becomes stable? Since each parameter has distinct convergence
behavior, our solution must adapt to each individual parameter
instead of using an identical freezing period for all. There
is a clear trade-off here: If the freezing period is set too
large, we can compress communication significantly, but some
should-be-drifting parameters cannot escape frozen state timely,
which may compromise the model convergence accuracy; if
the freezing period is set too small, performance benefit from
parameter freezing would be quite limited.

Therefore, we need to adaptively set the freezing period of
each stabilized parameter. For generality we do not assume
any prior knowledge of the model being trained, and choose
to adjust parameter freezing period in a tentative manner. In
particular, we shall greedily increase the freezing period as long
as the frozen parameter keeps stable after being unfrozen, and
shall meanwhile react agilely to potential parameter variation.

To this end, we design a novel control mechanism called
Adaptive Parameter Freezing (APF). APF is inspired by the
classical control mechanism of TCP (Transmission Control
Protocol) in computer networking [6], [10]: it additively
increases the sending rate of a flow upon the receipt of
a data packet in order to better utilize the bandwidth, and
multiplicatively decreases the sending rate when a loss event
is detected, to quickly react to congestion. This simple control
policy has been working extremely robustly as one of the
cornerstones of the Internet.

Similarly, under APF, the associated freezing period of each
stabilized parameter starts with a small value (e.g., one round
as in our evaluation). When the freezing period expires, the
parameter re-joins training in the following round, after which
we update its effective perturbation and re-check its stability.
If the parameter is still stable, we additively increase—and
otherwise multiplicatively decrease (e.g. halve)—the duration of
its freezing period, thereby reacting to the individual dynamics
of each parameter. This way, the converged parameters would
stay frozen for most of the time, whereas the temporally
stabilized ones can swiftly resume regular synchronization.

D. Aggressive APF: Extension for Over-parameterized Models

Note that our previous analysis in Sec. III is based on the
assumption of convex model (i.e., the loss function F (ω) be
convex). Analyzing neural networks with convex assumptions
is a common practice for the deep learning community,
because non-convex analysis is very complex, and meanwhile
many conclusions from conventional convex analysis can

Central
Server

Local
Training

APF
Manager

Local
Training

APF
Manager �select non-frozen

 parameters
��push/pull non-frozen
 parameters
��restore full model

�

�

� � � � � �

�

�

Fig. 8: FL workflow with APF_Manager.

approximately hold for DNN models. However, we have to
admit that DNN models are mostly non-convex and may
distinct from convex models in certain aspects. In practice we
have observed that, for large DNN models like ResNet, some
parameters may not converge (i.e., stabilize) due to irregular
landscapes like flat minima [21] or saddle points [25]: they keep
moving in a certain direction even after the model converges.
This phenomena is common for large models which are usually
over-parameterized [30], [41]. For those models, the fraction
of stable parameters that are frozen under APF may be quite
limited (as shown later in Fig. 9b of Sec. VI). Nonetheless,
given the over-parameterized nature, it is in fact possible to
aggressively freeze some unstable parameters while preserving
the model convergence accuracy.

Specifically, to exploit unstable but accuracy-immaterial pa-
rameters, we introduce an extended version of APF: Aggressive
APF. That is, in addition to the standard APF, we randomly
associate some unstable parameters with a non-zero freezing
period and put them into frozen status. Essentially, such an
aggressive freezing method is similar with the famous Dropout
technique [4], [19], [35], which, by randomly disabling some
neural connections in each iteration, has been shown to saliently
improve the model generalization capability. Thus, since our
previous adaptive freezing method can well adapt to the
prematurely-frozen parameters, for over-parameterized models,
Aggressive APF may attain a much better communication
compression level without additional accuracy loss.

V. IMPLEMENTATION

Workflow Overview. We implement APF as a pluggable
Python module, named APF_Manager, atop the PyTorch
framework [2]. The detailed workflow with APF_Mananger
is elaborated in Fig. 8 and Alg. 1. In each itera-
tion, after updating the local model, each client calls
the APF_Manager.Sync() function to handle all the
synchronization-related issues. The APF_Manager wraps up
all the APF-related operations (stability checking, parameter
freezing, model synchronization, etc.), rendering the APF
algorithm transparent and also pluggable to edge users.

Algorithm 1 Workflow with Adaptive Parameter Freezing
Require: Fs, Fc, Ts . Fs: synchronization frequency; Fc: stability check

frequency; Ts: threshold on Pk below which to judge a parameter as being stable
Client: i = 1, 2, ..., N :
1: procedure CLIENTITERATE(k)
2: ωi

k ← ωi
k−1 + ui

k . conduct regular local update
3: ωi

k ←APF_Manager.Sync(ωi
k) . pass model to APF_Manager

Central Server:
1: procedure AGGREGATE(ω̆1

k, ω̆2
k, ..., ω̆N

k)
2: return 1

N

∑N
i=1 ω̆

i
k . aggregate all the non-frozen parameters

APF Manager:
1: procedure SYNC(ωi

k)
2: ω̄i

k ← Mis frozen ? ωi
k−1 : ωi

k . emulate freezing by parameter
rollback; Mis frozen: freezing mask; ω̄i

k: parameters with selectively-frozen effect

3: if k mod Fs = 0 then
4: ω̆i

k ← ω̄i
k.masked select(!Mis frozen)

. ω̆i
k: a compact tensor composed of only the unstable parameters

5: ω̆k ←Central_Server.aggregate(ω̆i
k)

. synchronize the tensor containing unstable parameters

6: ω̄i
k ← ω̄i

k.masked fill(!Mis frozen, ω̆k)
. restore the full model by merging the frozen (stable) parameters

7: if k mod Fc = 0 then
8: Mis frozen←StabilityCheck(ω̄i

k,Mis frozen) .update Mis frozen

9: return ω̄i
k

10: function STABILITYCHECK(ω̄i
k,Mis frozen)

. Operations below are tensor-based, supporting where selection semantics
11: update E, Eabs, Pk with ω̄i

k where Mis frozen is False
. update effective perturbation based on Eq. 3

12: Lfreezing ← Lfreezing +Fc where Pk ≤ Ts and Mis frozen is False
13: Lfreezing ← Lfreezing/2 where Pk > Ts and Mis frozen is False

. Lfreezing: freezing period lengths, updated in TCP-style

14: Iunfreeze ← k + Lfreezing where Mis frozen is False
. Iunfreeze: iteration ids representing freezing deadlines of all the parameters

15: Mis frozen ← (k < Iunfreeze) . update freezing mask for all parameters
16: return Mis frozen

Key Operations. When doing global synchronization, the
APF_Manager selects and packages all the unstable pa-
rameters into a tensor for fast transmission. The selection
is dictated by a bitmap Mis frozen representing whether each
(scalar) parameter should be frozen or not, which is updated
in the function StabilityCheck() based on the latest
value of effective perturbation. To avoid extra communica-
tion overhead, the APF_Manager on each client refreshes
Mis frozen independently. Note that, since Mis frozen is calculated
from synchronized model parameters, the values of Mis frozen
calculated on each worker would be always identical.

A key implementation challenge is that, PyTorch operates
parameters at the granularity of a full tensor, with no APIs
supporting parameter freezing at a granularity of per dimension
(scalar). This also holds in other machine learning frameworks
like TensorFlow [3] and MXNet [12]. To achieve fine-grained
parameter freezing, we choose to emulate the freezing effect
by rolling back: those should-be-frozen scalar parameters
participate model update normally, but after each iteration,
their values are rolled back to their previous values (Line-2 in
Alg. 1). Meanwhile, all APF operations are implemented with

the built-in tensor-based APIs of PyTorch for fast processing.

Complexity Analysis. Given that edge devices are resource-
constrained, we need to be careful with the overheads incurred
by APF operations. It is easy to see that the space and
computation complexity of Alg. 1 is linear to the model size,
i.e., O(|ω|). This is acceptable because memory consumption
in model training is mostly incurred by input data and
feature maps, compared to which the memory consumption of
the model itself is usually orders-of-magnitude smaller [32].
Meanwhile, with Tensor-processing APIs provided by PyTorch,
the tensor traversal operations of APF are much faster than the
already-existing convolution operations in forward or backward
propagations. Such a light-weight nature allows APF to be
deployed in resource-constraint scenarios like on IoT devices,
and we will evaluate APF overheads later in Sec. VI-E.

VI. EVALUATION

In this section, we systematically evaluate the performance
of our APF algorithm. We start with end-to-end comparisons
between APF and the standard FL scheme, and then resort to a
series of micro-benchmark evaluations to justify the stability of
APF in various scenarios as well as its superiority over other
computing compression techniques. Finally we examine the
extra overheads incurred by APF operations.

A. Experimental Setup

Hardware Setup. We create a FL architecture4 with 50 EC2
m5.xlarge instances as edge clients, each with 2 vCPU
cores and 8GB memory (similar with that of a smart phone).
Meanwhile, following the global Internet condition [1], the
download and upload bandwidth of each client is configured
to be 9Mbps and 3Mbps, respectively. The central server is a
c5.9xlarge instance with a bandwidth of 10Gbps.

Model Training Setup. Datasets in our experiments are
CIFAR-10 and the KeyWord Spotting dataset (KWS)—a subset
of the Speech Commands dataset [38] with 10 keywords, which
are partitioned across the 50 clients. To synthesize non-IID
data distribution, we independently draw each client’s training
samples following Dirichlet distribution [40], which controls
local class evenness via a concentration parameter α (α→∞
means IID data distribution). In particular, we set α = 1 on
each worker (under which the expected max-min ratio among
sample numbers of different classes is over 50).

Models trained upon the CIFAR-10 dataset are LeNet-5 and
ResNet-18, and upon the KWS dataset is a LSTM network
with 2 recurrent layers (the hidden size is 64), all with a batch
size of 100. Meanwhile, for diversity we use the Adam [15]
optimizer for LeNet-5, and SGD optimizer for ResNet-18 and
LSTM; their learning rates are set to 0.001, 0.1, and 0.01,
respectively (default for each model-optimizer combination),

4In real-world FL scenarios, due to poor connection and client instability,
some clients may dynamically leave or join the FL process [28]. Yet this is
only an engineering concern and does not affect the effectiveness of our APF
algorithm, because with admission control [7], active workers in each round
always start with the latest global model (as well as Mis frozen for APF). For
simplicity, all the clients can work persistently in our FL architecture setup.

0 600 1200 1800 2400 3000
Communication Round

0

0.2

0.4

0.6

0.8
A

cc
ur

ac
y

Accuracy w/ APF
Accuracy w/o APF
Frozen Parameter Ratio

0

0.2

0.4

0.6

0.8

Fr
oz

en
 P

ar
am

et
er

 R
at

io

(a) LeNet-5

0 150 300 450 600 750
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy w/ APF
Accuracy w/o APF
Frozen Parameter Ratio

0

0.2

0.4

0.6

0.8

1.0

Fr
oz

en
 P

ar
am

et
er

 R
at

io

(b) ResNet-18

0 400 800 1200 1600 2000
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy w/ APF
Accuracy w/o APF
Frozen Parameter Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Fr
oz

en
 P

ar
am

et
er

 R
at

io

(c) LSTM

Fig. 9: Test accuracy curves when training different models with and without APF.

Model LeNet-5 ResNet-18 LSTM
Transmission-

Volume w/ APF 239 MB 2.62 (1.44) GB 194 MB

Transmission-
Volume w/o APF 651 MB 3.12 GB 428 MB

APF Improvement 63.3% 16.0% (53.8%) 54.7%

TABLE I: Cumulative Transmission Volume (Values in paren-
theses are from Aggressive APF).

Model LeNet-5 ResNet-18 LSTM
Per-round

Time w/APF 0.74 s 139 (95) s 1.8 s

Per-round
Time w/o APF 1.02 s 158 s 2.2 s

Improvement 27.5% 12.1% (39.8%) 18.2%

TABLE II: Average Per-round Time (Values in parentheses are
from Aggressive APF).

with a weight decay of 0.01. Moreover, the synchronization
and stability check frequencies—Fs and Fc in Alg. 1—are
set as 10 and 50. Regarding the stability check, the EMA
parameter α is 0.99, and the stability threshold on effective
perturbation is 0.05, which is halved once the fraction of frozen
parameters reaches 80%. Note that large models like VGG are
not employed considering the limited resources on FL clients,
as in existing works [26], [27].

B. End-to-End Evaluations

Convergence Validity. Fig. 9 shows the test accuracy curves
for training the three models with and without APF. Here a
model converges if its test accuracy has not changed for 100
rounds, and the dashed red lines represent the ratio of frozen
parameters in each round. These results demonstrate that APF
does not compromise convergence. In particular, we notice that
when training LeNet-5 and LSTM, APF actually achieves a
better accuracy. This is because, like dropout [35], intermittent
parameter freezing under APF can break up parameter co-
adaptations and avoid overfitting, which improves the model’s
generalization capability.

Communication Efficiency. We next turn to the efficiency
gain of APF. Table I summarizes the cumulative transmission
volume of each client up to convergence during training. APF

0 300 600 900 1200 1500
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy w/ Aggressive APF
Accuracy w/o APF
Frozen Parameter Ratio

0

0.2

0.4

0.6

0.8

1.0

Fr
oz

en
 P

ar
am

et
er

 R
at

io

Fig. 10: Aggressive APF attains a much larger communication
improvement for ResNet-18 without accuracy loss.

can greatly reduce the transmission volume: for LeNet-5 for
example, it provides a saving of 63.3%. Table II further lists
the average per-round time (i.e., training time divided by the
number of rounds) in each case, showing that APF can speed
up FL by up to 27.5%. For extreme cases where the bandwidth
(e.g. with cellular networks) is much less than the global
average, it is expected that the speedup would be even larger.

Effectiveness of Aggressive APF. Note that for ResNet-18
in Fig. 9b, the performance benefit of APF is less salient,
because ResNet-18 is over-parameterized and many parameters
in convergence state may not be stable (Sec. IV-D). Recall that
we have introduced Aggressive APF to address this problem. To
evaluate its performance, we set the possibility of freezing an
unstable parameter as min(K

2000 , 0.5), where K is the round
number. As shown in Fig. 10, under Aggressive APF, the
overall transmission reduction increases to 53.8% (in contrast
to 16.0% in Fig. 9b) with the same accuracy performance. In
Table I and Table II, as noted by the values in parentheses,
Aggressive APF largely outperforms APF in both transmission
volume and per-round time for ResNet-18.

C. Micro-Benchmark Evaluations

Performance Comparison with Partial-Synchronization
Method and Permanent-Freezing Method on Extremely
non-IID Data. Recall that in Sec. IV-B we explored two
strawman solutions to avoid transmitting stable parameters:
partial synchronization (i.e., only synchronizing the unstable

0 600 1200 1800 2400 3000
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

Standard FL
APF
Partial Sync
Permanent Freezing

(a) LeNet-5

0 300 600 900 1200 1500
Communication Round

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Standard FL
APF
Partial Sync
Permanent Freezing

(b) LSTM

Fig. 11: Performance comparison among different schemes
when training LeNet-5 and LSTM on extremely non-IID data.

0 600 1200 1800 2400 3000
Communication Round

0.5

0.55

0.6

0.65

0.7

A
cc

ur
ac

y

TCP-style
Pure-Additive
Pure-Multiplicative
Fixed (10)

0 600 1200 1800 2400 3000
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

le
 R

at
io

Fig. 12: A comparison of the TCP-style control scheme in
APF against other potential design choices. Pure-Additively
means to additively increase or decrease the freezing period
by 1; Pure-Multiplicatively means to multiplicatively increase
or decrease the freezing period by 2×; Fixed (10) means to
freeze each stabilized parameters for 10 (in number of stability
checks, i.e., for 10× Fc iterations).

parameters and having the stable ones updated locally) and per-
manent freezing (i.e., no longer updating the stable parameters).
Here we compare their performance with standard FL and APF
in a setup with extremely non-IID data. In particular, we train
LeNet-5 with 5 workers, and each worker is configured to host
only 2 distinct classes of CIFAR-10. As shown in Fig. 11a,
APF achieves the same accuracy as standard FL for LeNet-5.
More importantly, because parameter freezing in APF can avoid
overfitting and improve the model generalization capability,
in Fig. 11b it attains an accuracy improvement of 18% over
standard FL, which is consistent with our previous conclusion
from Fig. 9. Meanwhile, in each case, the accuracy performance
of APF is much better than both partial synchronization and
permanent freezing methods.

Necessity of the TCP-style Freezing Control Mechanism
in APF. Note that a key building block of APF is a TCP-
style mechanism to control the parameter freezing period, i.e.,
additively increase or multiplicatively decrease the freezing
period of each parameter based on whether that parameter
keeps stable after being unfrozen. Then, is it necessary or
can we replace it with a simpler mechanism? To evaluate
that, we replace it with three different control mechanisms:
pure-additive—increase or decrease the freezing period al-
ways additively; pure-multiplicative—increase or decrease the
freezing period always multiplicatively; and fixed—freeze each
stabilized parameter for a fixed period (across 10 stability

0 1000 2000 3000 4000
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

APF
Gaia
CMFL

(a) LeNet-5

0 300 600 900 1200 1500
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

APF
Gaia
CMFL

(b) LSTM
Fig. 13: Performance comparison between APF and two typical
sparsification methods—Gaia and CMFL.

checks or for 10 × Fc iterations in our experiment). Fig. 12
shows the validating accuracy and instantaneous stable ratio
under each scheme. While different schemes can reduce the
overall communication volume to a similar extent, our TCP-
style design, by freezing parameters tentatively and unfreezing
them agilely once parameter shifting occurs, can yield the best
testing accuracy.

Comparison between APF and other Sparsification
Methods—Gaia and CMFL. We further compare the per-
formance of APF with two typical sparsification methods in
the literature: Gaia [22] and CMFL [37], which have been
introduced in Sec. II. We implement5 Gaia and CMFL also
with PyTorch, and in our evaluation their hyper-parameters are
set to the default values: the significance threshold in Gaia
is 0.01 and the relevance threshold in CMFL is 0.8. Fig. 13
shows the accuracy curves when training LeNet-5 and LSTM
with 5 clients each hosting two distinct sample classes. As
shown in Fig. 13, in each case APF can always make the
best model accuracy. This is because Gaia and CMFL are
blind to the long-term model training process, and updates that
are temporally insignificant (in value) or irrelevant (in update
direction) may still need to be transmitted to ensure validity.

D. Sensitivity Analysis

Hyper-parameter Robustness. As discussed in Sec. IV-C, to
make APF robust to stability threshold, we have introduced a
mechanism that tightens the stability threshold each time most
(80% in our setup) parameters become stable. To verify the
effectiveness of this approach, we purposely loosen the initial
stability threshold on effective perturbation from 0.05 to 0.5,
and then train LeNet-5 again following the setup in Sec. VI-A.
Fig. 14 depicts the corresponding accuracy curve, together with
the instantaneous ratio of frozen parameter. Comparing Fig. 14
with Fig. 9a we can easily find that, under a looser initial
stability threshold, the number of frozen parameters increases
more rapidly, but the price paid is that the instantaneous
accuracy is slightly below that of standard FL (before round-
600). However, after several tightening actions, APF gradually

5We implement Gaia and CMFL with two respective Python modules—
Gaia_Manager and CMFL_Manager. Their workflows are similar with
that of APF_Manager: first select the valuable parameters for transmission,
second to conduct remote synchronization, and third to restore the local model.

0 600 1200 1800 2400 3000
Communication Round

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Accuracy w/ APF
Accuracy w/o APF
Frozen Parameter Ratio

0

0.2

0.4

0.6

0.8

Fr
oz

en
 P

ar
am

et
er

 R
at

io

Fig. 14: When the initial stability threshold is set loosely, LeNet-
5 can still converge well after several tighten-up actions.

Model LeNet-5 ResNet-18 LSTM
Computation Time Incurred

by APF (per-round) 0.009 s 1.278 s 0.011 s

Computation Time Inflation Ratio
incurred by APF 1.93% 4.50% 1.42%

Memory Occupied
for APF Processing 1.2 MB 142 MB 4.8 MB

Memory Inflation Ratio
incurred by APF 0.18% 8.51% 2.35%

TABLE III: Computation (extra time required for each round
in average) and memory overheads of APF.

catches up with—and finally outperforms—standard FL in
accuracy. Therefore, our APF algorithm can still yield good
performance even with inadequate hyper-parameters.

E. Overheads

Computation and Memory Overheads. The last question we
seek to answer here is, what are the memory and computation
overheads of APF? We measure the extra computation time
and physical memory consumption incurred by APF. Table III
lists the overheads for different models. As implied in Table III,
for small models like LeNet and LSTM, both the computation
and memory overheads are fairly small (< 2.35%); for
larger models like ResNet-18, because its model size is
more comparable to that of input and feature map, APF’s
memory overhead becomes larger (8.51%). Overall, considering
the salient reduction of network transmission volume and
convergence time, the overhead of APF is indeed acceptable.

VII. RELATED WORK
Synchronization bottleneck has long been a plaguing prob-

lem for distributed machine learning, and existing solutions
can be roughly summarized from two perspectives: one by
speculatively scheduling the communication order, and the
other by compressing the communication content.

In the scheduling perspective, communication efficiency can
be improved by relaxing the synchronization collisions [11],
[13], [20], by pipelining the layer-wise parameter transmis-
sions [34], [44], or by optimizing the transmission order of
different parameter groups [18], [24], [31].

In the content-compression perspective which is more closely
related to our work, there are mainly two solution categories:
quantization and sparsification.

Quantization reduces bandwidth consumption by transmitting
low-precision updates. Seide et al. [33] proposed to aggressively
quantize the gradients into only 1 bit, and achieved a 10× com-
munication speedup. A later work, QSGD [5], sought to balance
the trade-off between accuracy and gradient compressing ratio.
Further, Konečnỳ et al. [26] adopted a probabilistic quantization
method, which made the quantized value an unbiased estimator
of the initial one. These quantization approaches are orthogonal
to and can be integrated with APF.

Sparsification aims to send only the important gradients.
Storm [36] and Gaia [22] proposed to only send gradients
whose absolute or relative values were larger than a given
threshold. Dryden et al. [16] designed an approach that, given
a compression ratio, selected a fraction of positive and negative
gradient updates separately to meet that ratio while preserving
the expected gradient after aggregation. CMFL sought to report
only those gradients that were consistent enough with the global
gradient in updating direction. Nonetheless, As elaborated in
Sec. II, such sparsification algorithms are blind to the long-term
model convergence process: they identify valuable gradients
only with local and instantaneous knowledge. While APF
is essentially also a sparsification method, it fundamentally
eliminates parameter synchronization based on a global and
historical point of view, and can outperform Gaia and CMFL
as confirmed in Fig. 13.

Regarding parameter freezing, it has already appeared
in recent research literature. Brock et al. [9] proposed the
FreezeOut mechanism that gradually froze the first few layers
of a deep neural network—which were observed to converge
faster—to avoid the computation cost of calculating their
gradients. However, its operation granularity is an entire layer,
which is too coarse given the analysis in Sec. III. Worse,
because there was no parameter unfreezing mechanism, it
has been shown that FreezeOut would degrade the accuracy
performance despite the computation speedup [9].

VIII. CONCLUSION

In this work, to reduce the communication overhead in FL,
we have proposed a novel scheme called Adaptive Parameter
Freezing (APF), which seeks to identify the stable parameters
and then avoid synchronizing them. APF identifies the stabilized
parameters based on their effective perturbation and tentatively
freezes the stable parameters for certain time intervals, which
are adjusted in an additively-increase and multiplicatively-
decrease manner. We implemented APF based on PyTorch,
and testbed experiments have confirmed that APF can largely
improve the FL communication efficiency, with comparable or
even better accuracy performance.

ACKNOWLEDGEMENT

This research was support in part by fundings from Hong
Kong Research Grants Council (RIF grant R6021-20, GRF
grants 16213120, 16207818, 16209120, 11209520) and from
CUHK (4937007, 4937008, 5501329, 5501517).

REFERENCES

[1] Global Internet Condition (2019). https://www.atlasandboots.com/
remote-jobs/countries-with-the-fastest-internet-in-the-world.

[2] PyTorch. https://pytorch.org/.
[3] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. TensorFlow: A system for large-scale machine
learning. In USENIX OSDI, 2016.

[4] Geoffrey E. Hinton Alex Krizhevsky. ImageNet Classification with Deep
Convolutional Neural Networks. In NeurIPS, 2012.

[5] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan
Vojnovic. QSGD: Communication-efficient SGD via gradient quantization
and encoding. In Advances in Neural Information Processing Systems,
pages 1709–1720, 2017.

[6] Mark Allman, Vern Paxson, and Ethan Blanton. TCP congestion control.
Technical report, 2009.

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konecn Konečny,
Stefano Mazzocchi, H Brendan Mcmahan, Timon Van Overveldt, David
Petrou, Daniel Ramage, and Jason Roselander. Towards Federated
Learning at Scale: System Design. In SysML, 2019.

[8] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano
Mazzocchi, H Brendan McMahan, and et al. Towards federated learning
at scale: System design. In MLSys, 2020.

[9] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston.
Freezeout: Accelerate training by progressively freezing layers. arXiv
preprint arXiv:1706.04983, 2017.

[10] Vinton G. Cerf and Robert E. Kahn. A Protocol for Packet Network
Intercommunication. IEEE Transactions on Communications, pages
637–648, May 1974.

[11] Chen Chen, Wei Wang, and Bo Li. Round-Robin Synchronization:
Mitigating Communication Bottlenecks in Parameter Servers. In IEEE
INFOCOM, 2019.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv:1512.01274, 2015.

[13] Henggang Cui, Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei
Dai, Jesse Haber-Kucharsky, Qirong Ho, Gregory R Ganger, Phillip B
Gibbons, Garth A Gibson, et al. Exploiting iterative-ness for parallel ml
computations. In ACM SoCC, 2014.

[14] Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al.
Predicting parameters in deep learning. In Advances in neural information
processing systems, pages 2148–2156, 2013.

[15] Jimmy Ba Diederik P. Kingma. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2017.

[16] Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen.
Communication quantization for data-parallel training of deep neural
networks. In 2016 2nd Workshop on Machine Learning in HPC
Environments (MLHPC), pages 1–8. IEEE, 2016.

[17] Zidong Du, Krishna Palem, Avinash Lingamneni, Olivier Temam, Yunji
Chen, and Chengyong Wu. Leveraging the error resilience of machine-
learning applications for designing highly energy efficient accelerators.
In 2014 19th Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 201–206. IEEE, 2014.

[18] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell.
TICTAC: Accelerating Distributed Deep Learning with Communication
Scheduling. In MLSys, 2019.

[19] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R. Salakhutdinov. Improving neural networks by preventing
co-adaptation of feature detectors. 2012.

[20] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,
Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing.
More effective distributed ml via a stale synchronous parallel parameter
server. In NIPS, 2013.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural
Computation, 9(1):1–42, 1997.

[22] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R Ganger, Phillip B Gibbons, and Onur Mutlu. Gaia: Geo-
distributed machine learning approaching LAN speeds. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pages 629–647, 2017.

[23] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger.
Deep networks with stochastic depth. In European conference on
computer vision, pages 646–661. Springer, 2016.

[24] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova,
and Gennady Pekhimenko. Priority-based Parameter Propagation for
Distributed DNN Training. In MLSys, 2019.

[25] Kenji Kawaguchi. Deep learning without poor local minima. In Advances
in neural information processing systems, pages 586–594, 2016.

[26] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[28] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al.
Communication-efficient learning of deep networks from decentralized
data. arXiv preprint arXiv:1602.05629, 2016.

[29] Noboru Murata. A statistical study of on-line learning. Online Learning
and Neural Networks. Cambridge University Press, Cambridge, UK,
pages 63–92, 1998.

[30] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and
Nathan Srebro. The role of over-parametrization in generalization of
neural networks. In ICLR, 2018.

[31] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang
Lan, Chuan Wu, and Chuanxiong Guo. A generic communication
scheduler for distributed dnn training acceleration. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, 2019.

[32] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W Keckler. vDNN: Virtualized deep neural networks for scalable,
memory-efficient neural network design. In IEEE/ACM Micro, 2016.

[33] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit
stochastic gradient descent and its application to data-parallel distributed
training of speech dnns. In Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

[34] Shaohuai Shi and Xiaowen Chu. MG-WFBP: Efficient data communica-
tion for distributed synchronous sgd algorithms. In IEEE INFOCOM,
2019.

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[36] Nikko Strom. Scalable distributed dnn training using commodity gpu
cloud computing. In Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[37] L. WANG, W. WANG, and B. LI. Cmfl: Mitigating communication
overhead for federated learning. In IEEE International Conference on
Distributed Computing Systems (ICDCS), 2019.

[38] Pete Warden. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209, 2018.

[39] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei
Li, Nicholas Kong, Daniel Ramage, and Françoise Beaufays. Applied
Federated Learning: Improving Google Keyboard Query Suggestions.
2018.

[40] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Gree-
newald, Trong Nghia Hoang, and Yasaman Khazaeni. Bayesian
nonparametric federated learning of neural networks. In Proc. ICML,
2019.

[41] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In
NIN, 2016.

[42] Matthew D Zeiler. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

[43] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and
Yang Liu. Batchcrypt: Efficient homomorphic encryption for cross-silo
federated learning. In USENIX ATC, 2020.

[44] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan
Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P. Xing. Poseidon:
An efficient communication architecture for distributed deep learning on
GPU clusters. In USENIX ATC, 2017.

[45] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

