
Round-Robin Synchronization: Mitigating
Communication Bottlenecks in Parameter Servers

Chen Chen, Wei Wang, Bo Li
Hong Kong University of Science and Technology

{cchenam, weiwa, bli}@cse.ust.hk

Abstract—Deep learning is usually performed in GPU clus-
ters where each worker machine iteratively refines the model
parameters by communicating the update with the Parameter
Server (PS). More often than not, workers communicate in a
synchronous manner, so as to avoid using out-of-dated parameters
and make high-quality refinement in each iteration. However,
as all workers synchronize with the PS simultaneously, the
communication becomes a severe bottleneck. To address this
problem, in this paper we propose the Round-Robin Synchronous
Parallel (R2SP) scheme, which coordinates workers to make
updates in an evenly-gapped, round-robin manner. This way, R2SP
can minimize the network contention at a minimum cost of the
refinement quality. We further extend R2SP to heterogeneous
clusters by adaptively tuning the batch size of each worker
based on its processing capability. We have implemented R2SP
as a ready-to-use python library for status-quo deep learning
frameworks. EC2 deployment in GPU clusters show that R2SP
effectively mitigates the communication bottlenecks, accelerating
the training of popular image classification models by up to 25%.

I. INTRODUCTION

The recent years have witnessed the wide success of Deep
Learning (DL) [1] in many practical applications, such as image
classification [2], [3] and speech recognition [4], [5]. Due to
the large volume of data samples, neural networks are often
trained in cluster environments under the Parameter Server
(PS) architecture [6]–[9], where a number of parallel workers
iteratively compute model updates using their local sample
batches, and communicate the updates with the PS to refine
the global model parameters.

To speed up the training process, workers in learning
clusters are typically equipped with GPU accelerators. Given
the relatively stable processing speed of GPU devices, many
learning frameworks employ the Bulk Synchronous Parallel
(BSP) scheme to coordinate GPU workers, which is shown
to yield the best training performance [10]–[12]. Under BSP,
workers synchronize with the PS at the end of each iteration and
will not proceed until the model parameters are fully updated
with all their updates. This ensures that those workers can
make high-quality model refinements in each iteration, because
they always share the up-to-date parameters.

However, in GPU clusters, communication is frequently a
bottleneck [13], [14], which significantly delays the training
progress in the presence of a synchronization barrier. With GPU
accelerators, the training of each iteration quickly completes,
but workers still have to wait for a long time to transfer
updates to the PS and download the refined parameters from
there. In our empirical studies, over 90% of iteration time

was used for communication when training a VGG16 model
in an EC2 cluster with 10 Gbps links (details in Sec. II).
Similar observations have also been made in [13], [14]. It is
hence imperative to mitigate the communication bottleneck to
accelerate training.

Under the BSP scheme, network contention arises as a
main source of the communication bottleneck. In clusters with
homogeneous GPU devices, workers synchronize at roughly
the same time, contending for the network bandwidth of the PS.
Consequently, each worker only transfers at low bandwidth,
delaying the entire iteration (i.e., low hardware-efficiency). To
address this problem, an intuitive approach is to remove the
synchronization barrier so that workers can communicate at
different time: the reduced chance of network contention results
in higher bandwidth share for each worker.

A naive implementation of this approach goes to the
Asynchronous Parallel (ASP) scheme, where each worker
communicates with the PS asynchronously and proceeds to
the next iteration without waiting for the others’ updates.
However, the ASP scheme falls short in two aspects. First,
without coordination, network transfers from different work-
ers might randomly “collide” with each other, leading to
suboptimal performance on contention mitigation. Second,
without synchronization, the computation often iterates on
stale model parameters, which may drive the updates away
from the optimum and thus require more iterations for the
model to converge [15]–[17] (i.e., low statistical efficiency).

In this paper, our goal is to (1) minimize the network con-
tention in GPU clusters for improved hardware efficiency, while
(2) attaining near-optimal statistical efficiency by minimizing
the extent of parameter staleness. To this end, we propose
a simple, yet effective worker-coordinating scheme—Round-
Robin Synchronous Parallel (R2SP). Under R2SP, workers
make updates to the PS in a fixed round-robin order, and
those updates are evenly staggered with each other. This
approach provides two benefits. First, by evenly staggering
workers’ network transfers, instantaneous contention for the PS
bandwidth can be minimized. Second, by coordinating workers
to make updates in a fixed round-robin order, R2SP can bound
the parameter staleness by a minimum amount, which, we
show both theoretically and empirically, achieves much better
statistical efficiency than existing asynchronous schemes.

We further generalize the design of R2SP to heteroge-
neous clusters consisting of GPUs of various generations or
architectures—also a common case in production datacen-

ters [17]–[19]. Owing to hardware heterogeneity, those GPU
workers are of diverse computing capabilities. Directly applying
R2SP can be inefficient: fast workers finish computations
quickly, but have to wait long for their turn to make update to
the PS. We address this problem with batch size tuning. In a
nutshell, we assign fast workers with large sample batches, so
as to keep them busy in the entire iteration. As fast workers now
do more useful work without idling under the R2SP scheme,
the model convergence speed can be further accelerated.

We have implemented R2SP as a ready-to-use Python library
for existing learning frameworks such as TensorFlow [7]
and MXNet [8]. EC2 deployment atop 16 GPU-workers
(g3.4xlarge instances) demonstrates that R2SP can reduce
the iteration time by more than 30%. Overall, the training
convergence is sped up by 25%. Moreover, evaluations in a
heterogeneous EC2 cluster show that, with batch size tuning,
R2SP can further speed up model convergence by 40%.

II. BACKGROUND AND MOTIVATION

In this section, we briefly review Deep Learning (DL)
and the Parameter Server (PS) architecture, along with the
synchronization schemes. We show through empirical studies
that communication is a bottleneck for GPU-assisted training,
of which network contention is the main cause.

A. Background

Deep Learning. Given a neural network model, the goal of
DL is to find the model parameters ω? that minimizes the loss
function L(ω) over the entire training dataset, i.e.,

ω? = argminL(ω) = argmin
1

|D|
∑

s∈D
f(s, ω).

Here, D is the labeled training dataset, and f(s, ω) is the
loss value when using the parameters ω to predict sample s.
Typically, f is defined as the sum of the classification cross-
entropy and the regularization penalty.

Mini-batch Stochastic Gradient Descent [20], [21], or simply
SGD, is the state-of-the-art algorithm to train model parameters
ω?. Its basic idea is to iteratively refine ω with the worker
updates, i.e., for iteration k we have ωk+1 = ωk + uk, where

uk = −ηkgk = −ηk
1

|Ik|
∑

s∈Ik
∇f(s, ωk).

Here, uk is the update; ηk is the learning rate; gk is the gradient
calculated from Ik—a sample batch from the training dataset.

Parameter Server. Many real-world learning problems have
very large datasets. In this case, the training of DL models
is usually performed in a cluster of machines following the
Parameter Server (PS) architecture [6]–[8], [20], [22]. In the PS-
based systems, the training datasets are distributed to a number
of worker machines, and the model parameters are stored on
one or multiple servers. In each iteration, a worker first pulls
the latest model parameters from the PS, then computes the
local update (gradient) based on its sample batch, and finally
pushes the gradient to the PS to refine the parameters.

ResNet32 AlexNet VGG16 Inception-v3
Parameter Size 50 MB 240 MB 552 MB 108 MB

Communication-
Blocking Time 0.11s 2.89s 9.04s 1.27s

Iteration Time 0.23s 3.39s 9.74s 1.97s
Communication

Overhead 47.8% 85.2% 92.8% 64.5%

TABLE I: Communication dominates the learning time for
various DL models in a distributed cluster with 8 GPU-workers.

Synchronization Schemes. In the PS-based systems, how to
coordinate workers critically impacts the training performance.
Three schemes have been developed in this regard: Bulk
Synchronous Parallel (BSP), Asynchronous Parallel (ASP),
and Stale Synchronous Parallel (SSP).

BSP imposes a synchronization barrier, with which workers
cannot proceed to the next iteration before the parameters
are fully updated. In contrast, ASP removes this barrier and
allows workers to asynchronously start the next iteration without
waiting for the updates from slowed workers. While asynchrony
improves hardware efficiency (i.e., makes short iterations), it
harms statistical efficiency (i.e., requires more iterations for
model convergence) as the computation may use out-of-date
(stale) parameters. SSP [15], [23] comes as a middle ground
between the two schemes. It allows asynchronous training with
stale parameters, provided that the progress gap between the
fastest worker and the slowest is within a bounded amount.

Prior work [15], [23], [24] shows that in CPU clusters,
relaxed synchronization (e.g., ASP or SSP) usually results
in faster learning convergence. However, this is not the case
for GPU-assisted training. As computation is no longer the
bottleneck (GPUs are orders-of-magnitude faster than CPUs
in training), improving statistical efficiency becomes more
relevant. In GPU clusters, the harm caused by stale parameters
outweighs the harm from synchronization waiting [10], [11].
Therefore, for GPU-assisted training, the BSP scheme has been
widely deployed in practice [11]–[13].

B. Communication Bottlenecks in Parameter Servers

However, the biggest concern about the BSP scheme in GPU
clusters is the potential communication bottleneck [13], [14].
As the training in each iteration gets dramatic speedup (usually
in sub-seconds) by GPU accelerators, workers and the PS need
to frequently exchange updates/parameters.

We empirically quantify the impact of communications
through EC2 deployment with 2 PS nodes1 and 8 GPU
workers interconnected by 10 Gbps links. Each PS node is
a c5.9xlarge instance (36 vCPUs and 72 GB RAM); each
worker node is a g3.4xlarge instance (one NVIDIA Tesla
M60 GPU and 16 GB GPU memory). We trained four popular
image classification models in TensorFlow [7] using the BSP
scheme: ResNet32, AlexNet, VGG16, and Inception-v3. We
used CIFAR-10 [25] datasets for the first three models and

1Communication is still a bottleneck when one PS shard is co-located with
one worker, because in synchronous mode, all the workers would concurrently
pull/push the parameters stored in one PS shard at a time.

0 10 20 30 400.0

0.5

1.0

PS
 U

pl
in

k
U

sa
ge Total (8 Workers) From Worker-1 From Worker-2

0 10 20 30 40
Time (s)

0.0

0.5

1.0

PS
 D

ow
nl

in
k

U
sa

ge

Fig. 1: Total and worker-1/2-originated
bandwidth utilization of the PS’s down-
link and uplink (VGG16).

ResN
et3

2

Alex
Net

VGG16

Inc
ep

tio
n-v

3
0

20

40

60

80

100

Ite
ra

tio
n

Sp
ee

du
p

(%
)

Fig. 2: Iteration
speedup if the
network contention
is eliminated.

ImageNet [26] for the last. The model parameters are equally
partitioned between the two PS nodes. We trained each model
in 100 iterations and measured the mean iteration time and the
communication-blocking time. The latter measures how long in
an iteration the training is blocked by communications between
workers and the PS.

Table I summarizes our measurement results. Across the
four models, workers spent most of time communicating
with the PS nodes. Notably, in AlexNet and VGG16 models,
the communication overhead, defined as the communication-
blocking time normalized by the iteration time, even exceeds
85% and 90%, respectively.

C. Network Contention under the BSP Scheme

To understand how the communication bottleneck is formed
under the BSP scheme and why it is so dominant, we
resort to a deep-dive experiment focusing on the network
behaviors between workers and the PS. In particular, for each
PS node, we measured the bandwidth usage of its uplink
(outbound to workers) and downlink (inbound to PS) during
the training process. Fig. 1 depicts our measurement results
for VGG16 in a randomly selected interval spanning 40 s.
For ease of presentation, we also depict the total amount of
traffics contributed by worker-1 and worker-2. The bandwidth
usage statistics were collected every 100 ms. We make two
observations as follows:

1) Synchronized communication results in severe network
contention, forcing each worker to transfer at low band-
width. Under the BSP scheme, workers synchronize at the
end of each iteration and compete for the link bandwidth
of the PS. As shown in Fig. 1, each worker only receives
1/8 of the total available bandwidth in both the uplink
and downlink, substantially delaying the network transfer.

2) Synchronization results in uni-directional traffics at a time,
wasting bandwidth in full-duplex links. Network connec-
tions in today’s datacenters are full-duplex links [27], [28],
meaning that the uplink and downlink bandwidth are two
independent resources that can be utilized concurrently.
In the presence of the synchronization barrier, however,
workers are forced to communicate in one direction at a

time—all pushing updates before the barrier and pulling
parameters after it. Therefore, as shown in Fig. 1, more
than 50% of time the uplink/downlink is wasted in idle,
even though network remains a bottleneck.

In summary, the synchronization barrier imposed by the
BSP scheme results in intense network contentions along with
low bandwidth utilization. Intuitively, if such contentions can
be avoided, we would expect salient training speedup. To
illustrate the potential benefits of doing so, we consider an
extreme setting where we purposely disabled 7 workers but used
only one to perform training, for which there is no network
contention. We trained four DL models and measured the
iteration time the worker spent. As shown in Fig. 2, the worker
is capable of achieving 25-60% speedup over the original
setting where it has to contend for bandwidth against the other
7 workers.2 This promising result motivates us to explore ways
to mitigate network contentions via relaxed synchronization.

However, existing schemes with relaxed or no synchroniza-
tion, notably SSP and ASP, suffer from low statistical efficiency
caused by stale parameters [15]. In fact, these schemes result
in even slower convergence than that of the BSP scheme for
GPU-assisted training [10], [11]. Moreover, neither SSP nor
ASP is capable of minimizing bandwidth contentions. Without
explicit coordinations, workers may have randomly-overlapped
communications from time to time.

Following the above discussions, we ask: can we have a
contention mitigation scheme that improves hardware efficiency
while still retaining near-optimal statistical efficiency? We give
an affirmative answer to this question in the following sections.

III. ROUND-ROBIN SYNCHRONIZATION

In this section, we present Round-Robin Synchronous Parallel
(R2SP) scheme for easing the communication bottleneck at
a minimum cost of statistical efficiency. We first limit our
discussion to homogeneous GPU workers, and defer a more
general solution for heterogeneous clusters to Sec. IV.

A. Overview

Ideally, our solution should achieve two objectives. First,
it should minimize the network contentions to accelerate DL
iterations. Second, as this can only be achieved via relaxed
synchronization, we shall minimize the negative impact of
such relaxation on the statistical efficiency, by restricting the
parameter staleness caused.

The R2SP scheme achieves these two objectives through two
control mechanisms that respectively control the temporal gap
between consecutive updates and the update order. Specifically,
to minimize network contention, the R2SP scheme enforces
a temporal gap between consecutive updates so as to evenly
stagger worker updates throughout the training process. Mean-
while, to minimize the parameter staleness, R2SP coordinates
workers to make gradient updates in a fixed round-robin order.
We next elaborate the two control mechanisms in detail.

2The price paid is the reduced image processing throughput as only one
worker is used for training. The purpose of this experiment is to illustrate the
potential benefits of eliminating network contention.

pull pull

pull pull

pull

Worker-1

Worker-2

Worker-3

Total
Bandwidth

Demand

t

t

t

t

T
T/3

T/3

T/3

(a) R2SP

pull

pull

pullpull

pull

pull

t

t

t

t

T’ (>T)

(b) BSP

Fig. 3: Under R2SP, the three workers make updates and start to
pull parameters at relative time 0, T3 and 2T

3 , respectively. With
such an inter-update gap, the network contention (described
as total bandwidth demand) can be remarkably alleviated
compared with that under BSP.

B. Controlling Inter-update Gap for Minimum Contention

To minimize network contentions, we shall minimize the
number of contending workers that communicate with the PS
simultaneously. This can be achieved by evenly staggering the
worker-PS communications throughout the training process. To
do so, the R2SP scheme enforces a temporal gap between two
consecutive worker updates made to the PS. More precisely, let
N be the number of workers and T the timespan of a training
iteration. In a homogeneous cluster with a uniform batch size,
each GPU worker has the same timespan T as it iterates over
the same number of data samples. The PS nodes hence expect
N updates received in a period of T time, and the gap between
two consecutive updates is set to T/N .

We refer to Fig. 3a as an illustrative example. It depicts
how three workers iteratively update their gradients and pull
the latest model parameters from the PS under the R2SP
scheme. The three workers are scheduled to synchronize with
the PS individually, each separated by an inter-update gap of
T
3 . This coordination results in no more than two contending
workers throughout the training iterations. In comparison,
with the BSP scheme shown in Fig. 3b, all three workers
contend for bandwidth at the same time, leading to prolonged
communication time due to severe network congestion.

C. Controlling Worker Update Order for Minimum Staleness

While enforcing the above inter-update gap can mitigate the
communication bottleneck, the resultant asynchrony poisons
statistical efficiency. Next, we further show that, by controlling
the worker update order, R2SP can minimize the negative effect
of such asynchrony on statistical efficiency.

Asynchrony impairs the statistical efficiency due to the
problem of stale parameters. Under an asynchronous scheme,
a worker calculates its local update (gradient) without seeing
the latest updates from the others. Hence, that update is
actually based on stale, out-of-date parameters, which inevitably
diverges the model refinement away from the optimum [15]–
[17]. In particular, the more updates a worker misses, the more
poisonous its update is, and in general the lower the statistical

uk
1 uk

2 uk
3 u

k+1
2

updates missed by worker-1

u
k+1
3 u

k+1
1

(a) SSP (Bound on Progress Gap: 1)

uk
1 uk

2 uk
3

updates missed by worker-1

u
k+1
1 u

k+1
2 u

k+1
3

(b) R2SP

Fig. 4: When workers make updates asynchronously, each
worker would miss some recent updates from others. Under
SSP, given 3 workers and the bound on progress gap being
1, the worst-case staleness is 4; under R2SP, by enforcing
workers to updated in a fixed round-robin manner, that worst-
case staleness is reduced to 2.

efficiency of the training process [15], [17]. Therefore, to
preserve good statistical efficiency, we shall try to minimize
the worst-case staleness, which is defined as the maximum
number of updates possibly missed by any worker.

An intuitive solution is to impose a tight bound on the
progress gap (measured by the number of iterations) between
the fastest worker and the slowest one, similar to SSP [15].
Fig. 4a depicts an example where the progress gap is bounded
by 1 iteration, the minimum one can expect for asynchronous
schemes. In the figure, we denote by uik the kth update worker-
i makes at the end of the kth iteration. Owing to the bound,
worker-1 (i.e., the fastest worker) after pushing its kth update,
can proceed to the (k+ 1)th iteration only when the other two
workers have already entered the kth iteration.

However, imposing such a tight, minimum bound on the
progress gap is still suboptimal for minimizing staleness,
because it suffers from the problem of out-of-order updates.
As a possible update sequence, in Fig. 4a, while worker-1 is
the first to push the kth update among the three workers, its
next update u1k+1 comes as the last among the three. Such
a disorder does not violate the bound on progress gap, but
degrades the worst-case staleness to 4 (in Fig. 4a, worker-1
has missed 4 updates when reporting u1k+1).

To address this problem, in R2SP we require that workers
make updates in a fixed round-robin order. As shown in Fig. 4b,
in any iteration k the three workers push updates in the order of
u1k, u2k, u3k. This results in the minimum worst-case staleness:
each worker misses only two updates from others. In general,
given N workers, the worst-case staleness under the R2SP
scheme is N − 1, as opposed to 2(N − 1) under the SSP-like
scheme. We next show in theory that R2SP results in higher
statistical efficiency than the SSP scheme.

D. Convergence Analysis

We analyze the convergence speed of R2SP by deriving the
regret bound, which quantifies how fast the learning accuracy
improves as the training iteration proceeds.

Lemma 1: Under the R2SP scheme, let ωik be the parameters
after the update from worker-i in iteration k. We have

ωik = ω0 +

k−1∑
k′=1

N∑
i′=1

ui
′

k′ +

i∑
i′=1

ui
′

k ,

where ω0 is the initial parameter, and N is the total number
of workers.

In a nutshell, Lemma 1 states that ωik is refined from initial
value ω0 by two groups of updates:

1. Updates from all workers in iterations 1 to k − 1.
2. Updates from workers 1, 2, ..., i in iteration k, which have

already been received by PS.
In order to analyze the convergence rate, we rewrite param-

eter ωik as a sequence indexed by the accumulative update
number t, where t is (k − 1)N + i:

ωik = ωt = ω0 +

t∑
t′=0

ut′ , where ut := utmodN
t/N .

Based on Lemma 1, our goal is to find the bound of the
regret R[W] associated with the parameter sequence {ωt}. The
analysis is based on two standard assumptions.

Assumption 1 (L-Lipschitz): For convex3 function ft(ω),
the sub-differentials ||∇ft(ω)|| are bounded by a constant L.

Assumption 2 (Bounded Diameter): For any ω, ω′ in the
parameter space, let D(ω||ω′) = 1

2 ||ω−ω
′||2 be their distance.

We have D(ω||ω′) ≤ F 2 for some constant F .
Theorem 1: Define ut := −ηt∇ft(ωt) = −ηtgt, where

ηt =
σ√
t

and σ = F
2L . Under Assumptions 1 and 2, we bound

the regret by

R[W] :=
1

T

T∑
t=1

[
ft(ωt)− ft(ω∗)

]
≤ 5FL

2
√
T
.

Before proving Theorem 1, we give the following lemma to
help bound the instantaneous regret for a certain iteration.

Lemma 2: For all t > 0 and ω ∈ Rn, we have:

〈ωt − ω∗, gt〉 =
ηt
2
||gt||2 +

1

ηt

[
D(ω∗||ωt)−D(ω∗||ωt+1)

]
.

Proof: According to Assumption 2, we have

D(ω∗||ωt+1)−D(ω∗||ωt)=
1

2
||ω∗−ωt+ωt−ωt+1||2−

1

2
||ω∗−ωt||2

=
1

2
||ω∗−ωt+ηtgt||2−

1

2
||ω∗−ωt||2=

1

2
η2t ||gt||2−ηt〈ωt−ω∗, gt〉.

Moving 〈ωt−ω∗, gt〉 to the left, we prove the lemma.
We are now ready to prove Theorem 1.

Proof: Because ft(ω) is convex, we use Lemma 2 to
expand R[W] to get its upper bound:

R[X] =
1

T

T∑
t=1

[ft(ωt)− ft(ω∗)] ≤
1

T

T∑
t=1

〈ωt−ω∗, gt〉

=
1

T

T∑
t=1

[ηt
2
||gt||2+

D(ω∗||ωt)−D(ω∗||ωt+1)

ηt

]
=
1

T

T∑
t=1

ηt
2
||gt||2

+
1

T

[D(ω∗||ω1)

η1
−D(ω∗||ωT+1)

ηT
+

T∑
t=2

D(ω∗||ωt)(
1

ηt
− 1

ηt−1
)
]
.

We then bound each term in the equation above. The first
term can be bounded using the L-Lipschitz property in
Assumption 1:

T∑
t=1

ηt
2
||gt||2≤

T∑
t=1

ηt
2
L2≤

T∑
t=1

σL2

2
√
t
≤
∫ T

0

σL2

2
√
t
=σL2

√
T .

3Strictly speaking, most DL problems are non-convex. But in current DL
community, by adopting the SGD aglorithm, they are treated as being convex.
The resultant local minimum, avoiding over-fitting, can usually work well.

0 1000 2000 3000
Batch Size

0

2

4

6

8

Ite
ra

tio
n

Ti
m

e
(s

) g2.2xlarge
p2.xlarge
g3.4xlarge

(a) ResNet32 on CIFAR-10 dataset

0 20 40 60 80 100 120
Batch Size

0

2

4

6

8

Ite
ra

tio
n

Ti
m

e
(s

) g2.2xlarge
p2.xlarge
g3.4xlarge

(b) Inception-v3 on ImageNet dataset

Fig. 5: Relationship between iteration time and batch size for
different models and different EC2 instance types.

With the bounded diameter property in Assumption 2, we have

D(ω∗||ω1)

η1
−D(ω∗||ωT+1)

ηT
+

T∑
t=2

D(ω∗||ωt)(
1

ηt
− 1

ηt−1
)

≤ F 2

σ
− 0 +

F 2

σ

T∑
t=2

[√
t−
√
t− 1

]
=
F 2

σ

√
T .

Putting it altogether, we have:

R[W] ≤ σL2

√
T

+
F 2

σ
√
T

=
FL

2
√
T

+
2F 2

√
TF/L

=
5FL

2
√
T
.

This completes the proof of Theorem 1.

Remarks. Theorem 1 further indicates that the convergence
speed under R2SP is faster than that under SSP. Following
the same setup, the regret bound under SSP, according to
the analysis in [15], is 4FL

√
2(b+ 1)/T , in which b is the

aforementioned bound on progress gap. Even if we set b to
the minimum value 1, the regret bound under SSP (8FL/

√
T)

remains larger than that under R2SP. We will empirically
confirm such superiority of R2SP in Sec. VI.

IV. BATCH SIZE TUNING

So far, our discussions were limited to homogeneous clusters
where all GPU workers have the same computing capability.
While this is usually the case in practice [6]–[9], it is not
uncommon that many DL models were trained in heterogeneous
clusters with different generations of GPUs [17]–[19]. For
example, a budget-limited user might use a combination of
whatever GPU instances it can find in the EC2 spot market
offering high performance-cost ratio, regardless of their types.

Resource wastage. In such heterogeneous clusters, when apply-
ing our R2SP in the distributed DL process, one problem is the
resource wastage. This is because existing DL frameworks [7],
[8] enforce a uniform batch size across workers. As GPUs are
of different computing capabilities, their batch processing time
can be highly divergent. This is confirmed in Fig. 5, where we
measured the iteration time against batch size for ResNet32
and Inception-v3 using different EC2 GPU instances. As shown
in Fig. 5a, different instances take different time to iterate over
a batch of 1000 samples.

As workers now have different iteration time T , the inter-
update gap (T/N in Sec. III-B) is determined by the slowest
worker (i.e., the one with the longest T). Consequently, fast

worker-1
worker-1

�

worker-1

Parameter Server

g
����

1
k �

�

R SP
Coordinator

2

 Request
 To Proceed

 Permission
 To Proceed &

New Batch
Size

Fig. 6: Architecture and workflow of R2SP-Coordinator (in
iteration k). The circled numbers represent the execution order.

workers have to wait for their turn to come as they finish
iterations earlier, hence wasting their computing cycles and
impairing the learning efficiency.

Batch size tuning. To address this problem, we propose batch
size tuning for heterogeneous clusters. Our key insight is to
adaptively tune each worker’s batch size based on its computing
capability, so as to equalize their iteration time. That is to
say, the faster a worker is, the larger batch size it shall have.
Referring back to Fig. 5a, suppose initially the batch size of
the three instances is 1000. As p2.xlarge and g3.4xlarge
instances are faster than g2.2xlarge, we respectively increase
their batch sizes to around 1500 and 2200, so that all three
instances finish an iteration with similar time costs.

Batch size tuning is designed based on the linear relationship
between a worker’s batch size and its iteration time, as also
revealed in Fig. 5. That linear relationship represents the speed
that training samples are processed, which is stable for a GPU
instance when training a given DL model. Therefore, given the
potential idle time of a fast worker and its sample processing
speed, we can easily work out how to tune its batch size to
keep it busy during training without delaying others.

Moreover, when incorporating batch size tuning into R2SP,
we adopt a linear scaling rule on the learning rate, similar
to [12]. That is, after we increase a worker’s batch size, we
also proportionally scale up its learning rate when refining the
model with that worker’s gradient. This way, we can guarantee
that each sample has the same level of influence on model
refining so that biased results can be avoided.

Intuitively, for well-shuffled i.i.d. (i.e., independent and
identically distributed) data samples, we can expect improved
learning efficiency with batch size tuning. This is because it
enables more samples processed by workers in each iteration,
and under the i.i.d. condition, each sample is expected to have
a similar contribution to model convergence. We shall illustrate
this benefit through empirical studies in Sec. VI-C.

V. PROTOTYPE IMPLEMENTATION

We have implemented R2SP as a ready-to-use Python library,
called R2SP-Coordinator, for popular DL frameworks such
as TensorFlow [7] and MXNet [8].

Workflow. Fig. 6 illustrates how R2SP-Coordinator can be
used to coordinate workers. It implements the main logic of the
R2SP scheme by controlling when a given worker can proceed

Algorithm 1 Workflow with R2SP-Coordinator

Worker: i=1, 2, ..., N:
1: procedure WORKERITERATE(k)
2: pull latest parameter ω from PS
3: load sample batch Iik
4: calculate local gradient gik = 1

|Ii
k
|

∑
s∈Ii

k
∇f(s, ω)

5: ui
k ← −

|Iik|
Ii0
ηkg

i
k, push ui

k to PS
. the learning rate is linearly scaled with the worker batch size

6: send Request-to-Proceed signal to R2SP-Coordinator
7: block before receiving the Permission-to-Proceed signal

and the tuned batch size |Iik+1|
Parameter Server (PS):

1: procedure PARAMETERSERVERITERATE
2: update parameters ω ← ω + ui

k

R2SP-Coordinator:
1: procedure R2SP-COORDINATORITERATE
2: adjust batch sizes of the faster workers (if any) to eliminate

their resource wastage
3: issue Permission-to-Proceed signal to appropriate worker

at appropriate time

to the next iteration. In particular, before entering the next iter-
ation, 1© a worker first sends a Request-to-Proceed signal to
the R2SP-Coordinator and waits for its permission to proceed.
The R2SP-Coordinator, on the other hand, determines which
worker has the next turn and the earliest time for that worker to
proceed, so as to maintain the worker update order (Sec. III-C)
and the inter-update gap (Sec. III-B). Once it comes to the
worker’s turn, 2© R2SP-Coordinator notifies the worker by
issuing a Permission-to-Proceed signal. Upon receiving the
permission, the worker proceeds to the next iteration. It 3©
pulls the latest parameters from the PS and 4© pushes back the
update after the training iteration has completed. Algorithm 1
summarizes the entire workflow.

Batch size tuning. To enable batch size tuning for hetero-
geneous clusters, we piggyback the tuned batch size on the
Permission-to-Proceed signal. This allows faster workers
to process more samples in an iteration without being idle or
delaying the slower workers.

Profiling iteration time. To determine the temporal gap
between worker updates, the R2SP-Coordinator requires to
know the iteration time T . We use the EMA (Exponential
Moving Average) method to accurately learn the value of T .

Dealing with Fluctuation. So far, we have assumed that the
iteration time on a worker is stable across iterations. While
this generally holds in expectation, in practice the exact time
for each individual iteration could slightly fluctuate around
the expected value, mainly due to random perturbations of
GPU processing speed and network state. In this case, strictly
enforcing the inter-update gap would block those workers that
finish their iterations earlier than expected. Consequently, the
overall iteration time gets prolonged.

To remain robust to such random variations, we employ a
relaxation factor r in [0, 1]. That is, given N workers and their

iteration time T , we relax the update gap from T/N to rT/N .
This allows early birds to proceed to the next iteration, without
affecting late arrivals. In our implementation, we set r = 0.8
and find it to yield good performance (details in Sec. VI-D).

Overhead. In our implementation, we use Apache Thrift [29],
a light-weight RPC protocol developed by FaceBook, as the
underlying communication protocol between the coordinator
and workers. Given the small amount of control signals
exchanged (only a few bytes for each signal) and the low
computational complexity of the R2SP algorithm, the overhead
of our implementation is negligible.

VI. EVALUATION

In this section, we evaluate R2SP in two EC2 clusters with
homogeneous and heterogeneous GPU workers, respectively.
We first demonstrate the optimality of R2SP in mitigating
network contentions for fast DL training, and then evaluate the
effectiveness of batch size tuning in a heterogeneous cluster.
Finally, we perform sensitivity analysis to identify potential
factors that may affect the performance of R2SP.

A. Experimental Setup

EC2 deployment. We deployed two GPU clusters in Amazon
EC2. The first cluster (Cluster-A) consists of 4 PS nodes
and 16 homogeneous workers interconnected by 10 Gbps
links. Each PS node is a c5.9xlarge instance with 36 vCPUs
and 72 GB RAM; each worker is a g3.4xlarge instance
equipped with an NVIDIA Tesla M60 GPU. We used cluster-
A for performance comparison between R2SP and existing
synchronization schemes, namely BSP, ASP and SSP.4

The second cluster (Cluster-B) consists of 2 PS nodes
(c5.9xlarge) and 8 heterogeneous GPU workers including two
g2.2xlarge instances (NVIDIA GRID K520), two p2.xlarge
instances (NVIDIA K80), and four g3.4xlarge instances
(NVIDIA Tesla M60). We used cluster-B for evaluating the
benefits of batch size tuning in heterogeneous settings.

Datasets and Models. We trained two typical image classifi-
cation datasets using TensorFlow [7]: (1) CIFAR-10 [25] and
(2) ILSVRC12. The latter is a subset [26] of ImageNet22K
containing 1.28 million of training images in 1000 categories.
In particular, we trained ResNet32 [30], AlexNet [2] and
VGG16 [31] models over the CIFAR-10 dataset, and trained
Inception-v3 model [32] over the ILSVRC12 dataset. The
default batch size, unless otherwise specified, is set to 128 for
CIFAR-10 dataset, and 32 for ILSVRC12 dataset. Meanwhile,
for models trained upon CIFAR-10 dataset, the initial learning
rate is set to 0.01, while for ILSVRC12 it is 0.045.

Metrics. We trained a DL model until it converges and used
the training time as a metric of training efficiency. In our
evaluation, the training is deemed to converge if the loss value,
in 10 consecutive iterations, falls below 0.25 for ResNet32
(loss reduced by around 90%), 0.5 for AlexNet (loss reduced

4By default, TensorFlow does not support the SSP scheme. We implemented
it with a worker-coordinator that enforces fast workers to wait if the bound
of progress gap—set to 5 iterations in our experiment—is reached.

ResNet32
(BSP: 0.22s)

AlexNet
(BSP: 3.60s)

VGG16
(BSP: 8.09s)

Inception-v3
(BSP: 1.70s)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

0.92
0.83

0.89 0.930.94
0.88 0.92 0.91

0.84
0.72 0.67

0.82

ASP SSP R2SP

(a) Hardware Efficiency

ResNet32
(BSP: 8667)

AlexNet
(BSP: 3230)

VGG16
(BSP: 783)

Inception-v3
(BSP: 126122)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
or

m
al

iz
ed

 N
um

be
r o

f
Ite

ra
tio

ns
 to

 C
on

ve
rg

en
ce

1.18
1.48

2.69

1.33
1.14 1.27

1.67

1.181.05 1.08 1.12 1.10

ASP SSP R2SP

(b) Statistical Efficiency

ResNet32
(BSP: 1907s)

AlexNet
(BSP: 11628s)

VGG16
(BSP: 6334s)

Inception-v3
(BSP: 214407s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
or

m
al

iz
ed

C
on

ve
rg

en
ce

 T
im

e
1.09

1.23

2.39

1.24
1.07 1.12

1.54

1.07
0.88 0.78 0.75

0.90

ASP SSP R2SP

(c) Overall Efficiency

Fig. 7: Performance comparison among BSP, ASP, SSP and
R2SP. The presented values are normalized by that under BSP.

by around 80%), 2.3 for VGG16 (loss reduced by around
30%), and 6.0 for Inception-v3 (loss reduced by around 60%).
The training efficiency is further broken down into statistical
efficiency and hardware efficiency. The former is measured by
the average number of iterations performed by each worker
towards convergence; the latter is measured by the mean
iteration time across workers during the training process.

B. Benefits in Homogeneous Cluster

Efficiency. We evaluate the efficiency of R2SP against the
three existing synchronization schemes in cluster-A. Fig. 7
compares their performance, where we use BSP as the baseline
and normalize the results of the other schemes by that of BSP.

We start with hardware efficiency. Fig. 7a shows that
relaxed synchronization (i.e., ASP, SSP and R2SP) results
in faster training iteration than that with the BSP scheme, as
communication bottleneck is less of a concern. Among all four
schemes, R2SP minimizes the network contention and hence
attains the highest hardware efficiency. Notably, for network-
intensive models such as AlexNet and VGG16 (Table II-B),
R2SP speeds up their iterations by around 30% than BSP.

We next turn to statistical efficiency. Fig. 7b shows that
compared with BSP, more iterations are needed for convergence

0 1 2 3 4 5 6 7 8
Inter-update Gap (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

BSP
ASP
SSP
R2SP

Fig. 8: CDF of the inter-update
gap time when training VGG16.

ASP SSP R2SP1.0

1.1

1.2

1.3

1.4

1.5

1.6

In
st

an
ta

ne
ou

s L
in

k
U

til
iz

at
io

n
(N

or
m

al
iz

ed
 b

y
B

SP
)

1.12
1.08

1.34

1.16
1.12

1.39

Uplink
Downlink

Fig. 9: Instantaneous PS
bandwidth utilized by each
worker during transferring.

with relaxed synchronization—a consequence that stale param-
eters harm statistical efficiency. Nevertheless, R2SP results in
the minimum loss among the three asynchronous schemes, as
it bounds the staleness by a minimum amount by enforcing a
fixed round-robin order to worker updates (Sec. III-C).

Fig. 7c shows the overall efficiency. Despite the slight
loss of statistical efficiency, R2SP remains the fastest in
convergence due to its salient speedup in iterations. Specifically,
it outperforms BSP by up to 25% (VGG16). Note that in our
experiments, BSP appears more efficient than ASP and SSP,
which is consistent with previous observations [10]–[12].

Contention mitigation. To further illustrate how R2SP helps
mitigate network contention, we resort to deep-dive measure-
ments. We use the inter-update gap being zero as an indicator of
network contention: when two updates are made simultaneously,
the gap in between is zero. Therefore, the more zero gaps,
the more severe the network contention. Fig. 8 depicts the
distribution of inter-update gaps measured under the four
schemes when training VGG16. As expected, BSP results
in most zero gaps: zero gaps account for 15/16 of the total
number; the remaining 1/16 span the entire iteration (∼ 8 s).
This is because cluster-A has 16 workers, all making updates
simultaneously in front of the end-of-iteration barriers imposed
by BSP. ASP and SSP schemes, while slightly better than BSP,
remain suboptimal in contention mitigation, under which zero
gaps account for 75% and 83%, respectively. In comparison,
with R2SP, almost all inter-update gaps are equal to 1/16 of the
iteration span, meaning that the updates are evenly staggered
with minimum contentions in between.

We further measured the mean bandwidth at which workers
communicate with the PS on its uplink and downlink under
the four schemes. We depict the results, normalized by that of
BSP, in Fig. 9. As R2SP minimizes network contention, each
worker ends up with much higher instantaneous bandwidth than
that with the other schemes, which translates to accelerated
iterations as shown in Fig. 7a.

C. Batch Size Tuning in Heterogeneous Clusters

We now evaluate the effectiveness of batch size tuning in the
heterogeneous environments. We trained the ResNet32 model
in cluster-B using R2SP, with and without batch size tuning.
For each worker, we set the initial batch size to 512. As shown
in Table II, with equal batch size, fast workers (i.e., p2.xlarge

Instance
Type g2.2x p2.x g3.4x

Blocking
Time w/o

Tuning (s)
0 0.62 0.82

Speed
(sample/s) 429 628 917

Tuned
Batch Size 512 901 1264

TABLE II: Fast workers are
blocked long by vanilla R2SP.
Batch size tuning eliminates
such idle periods.

0 8 16 24 32 40
Time (×100s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

 V
al

ue

R2SP w/o
Batch Size Tuning
R2SP w/
Batch Size Tuning

Fig. 10: Convergence curves
of ResNet32 in Cluster-B.

and g3.4xlarge instances) complete an iteration earlier and
have to wait for their turn to proceed to the next iteration,
resulting in salient blocking time. With batch size tuning, we
assign larger batches to p2.xlarge and g3.4xlarge instances
in proportion to their processing speed. This would keep fast
workers busy in an iteration, hence avoiding resource wastage
due to idling instances.

Fig. 10 compares the convergence curve of training ResNet32
model using R2SP with (blue) and without batch size tuning
(red). The former leads to faster convergence. In particular,
given the convergence criterion specified in Sec. VI-A, batch
size tuning itself can accelerate convergence by around 40%.

D. Sensitivity Analysis

Finally, we perform sensitivity analysis on the factors that
may affect the performance of R2SP. Specifically, we evaluate
the behaviors of R2SP with various link bandwidth and values
of the relaxation factor (Sec. V).

Link bandwidth. Our previous evaluations were based on
10 Gbps network. To quantify how R2SP performs when
network is a even more severe bottleneck, we trained AlexNet
and VGG16 models in cluster-A with throttled link bandwidth.
Fig. 11 shows the iteration speedup of R2SP over BSP with
different bandwidth. We observe the same trend for both
models: the more severe the network bottleneck is, the more
significant speedup R2SP can provide. R2SP therefore arises
as a promising solution for network-intensive training, such as
learning at an extremely large scale [12] and geo-distributed
machine learning [22].

Relaxation factor. Recall that in Sec. V, we have introduced
a relaxation factor to avoid blocking early-bird workers in
the presence of iteration time fluctuations. To evaluate its
effectiveness, we trained VGG16 model in cluster-A (for
200 iterations) with varying relaxation factors from 0 to 1.
In each experiment, we measured the average blocking time
per iteration, together with the mean iteration time. Fig. 12
shows the results. As the relaxation factor gets smaller, the
mean blocking time decreases. However, configuring a smaller
relaxation factor means that worker updates are more loosely
staggered, which, in turn, adds the risk of network contention
and results in prolonged iteration time. Owing to this tradeoff,
we see in Fig. 12 that the sweet spot for the relaxation factor
is achieved at 0.8, which leads to the shortest iteration.

108642
PS Bandwidth (Gbps)

0

20

40

60

80
Ite

ra
tio

n
Sp

ee
du

p
(%

) AlexNet
VGG16

Fig. 11: The more severe the
network bottleneck, the larger
benefit (vs. BSP) from R2SP.

1.00.80.60.40.20.0
Relaxation Factor

0

2

4

6

8

Ti
m

e
(s

)

Blocking Time
Iteration Time

Fig. 12: Blocking time and iter-
ation time when using different
relaxation factors under R2SP.

VII. RELATED WORK

Mitigating Network Bottleneck. Network bottleneck has long
plagued distributed deep learning, and many approaches have
been developed to address that problem. Notably, some works
have proposed to compress the DL models—by quantizing
each model parameter to fewer bits [33], or by pruning
the insignificant connections [34]—to sacrifice accuracy for
reduced worker-PS transmission amount. Meanwhile, param-
eters (basically a matrix) for the fully-connected layers in
neural networks can be decoupled into two vectors, and it has
been observed that transferring those vectors rather than the
initial parameter matrices is more communication-efficient [13].
Furthermore, Gaia [22] has recently proposed to transfer merely
those gradients significant enough for model refining, so as to
reduce the communication frequency over bottlenecked links.

Nonetheless, those approaches are orthogonal to R2SP: they
focus only on reducing the total transmission demand, and fail
to notice that workers can time-multiplex the bottlenecked links
to have more instantaneous bandwidth for fast transmission.

Efficient Learning in Heterogeneous Clusters. For efficient
deep learning in heterogeneous clusters (Sec. IV), Zhang et
al. [18] and Jiang et al. [17] seek for improved statistical
efficiency by dynamically adjusting the learning rate based on
the temporal extent of parameter staleness, but they cannot
eliminate resource wastage elaborated in Sec. IV. Further,
FlexRR [35] seeks to avoid such resource wastage by offloading
some training work from the slower workers to the faster ones,
but this would incur much more communication overhead.
Those solutions are thus less suitable than batch size tuning.

VIII. CONCLUSION

In this work, we have designed the round-robin synchronous
parallel (R2SP) scheme to mitigate the communication bot-
tlenecks in PS-based learning systems. R2SP evenly staggers
the worker-PS communications within iterations for improved
hardware efficiency, while in the meantime enforcing a fixed
round-robin update order to bound the staleness of parameters
by a minimum amount. We have also extended R2SP to
heterogeneous clusters and implemented it as a Python library
for prevalent learning frameworks. Prototype evaluations show
that R2SP can speed up model convergence by up to 25%.

ACKNOWLEDGEMENT

The research was supported in part by RGC GRF grants
under the contracts 16206417, 16207818 and 26213818, as
well as an RGC CRF grant under the contract C7036-15G. We
also thank Huangshi Tian for his assistance in the evaluations.

REFERENCES

[1] Y. LeCun et al. Deep learning. Nature, 521(7553):436–444, 2015.
[2] A. Krizhevsky et al. ImageNet classification with deep convolutional

neural networks. In NIPS. 2012.
[3] C. Farabet et al. Learning hierarchical features for scene labeling. IEEE

Trans. Pattern Anal. Mach. Intell., 35(8):1915–1929, 2013.
[4] R. Collobert et al. Natural language processing (almost) from scratch. J.

Mach. Learn. Res., 12(Aug):2493–2537, 2011.
[5] I. Sutskever et al. Sequence to sequence learning with neural networks.

In NIPS. 2014.
[6] M. Li et al. Scaling distributed machine learning with the parameter

server. In USENIX OSDI. 2014.
[7] M. Abadi et al. TensorFlow: A system for large-scale machine learning.

In USENIX OSDI. 2016.
[8] T. Chen et al. Mxnet: A flexible and efficient machine learning library

for heterogeneous distributed systems. arXiv:1512.01274, 2015.
[9] A. Paszke et al. Automatic differentiation in pytorch. In NIPS-W. 2017.

[10] H. Cui et al. Geeps: Scalable deep learning on distributed gpus with a
gpu-specialized parameter server. In ACM Eurosys. 2016.

[11] J. Chen et al. Revisiting distributed synchronous sgd. arXiv preprint
arXiv:1604.00981, 2016.

[12] P. Goyal et al. Accurate, large minibatch sgd: training imagenet in 1
hour. arXiv preprint arXiv:1706.02677, 2017.

[13] H. Zhang et al. Poseidon: An efficient communication architecture for
distributed deep learning on gpu clusters. In USENIX ATC. 2017.

[14] S. Shi et al. MG-WFBP: Efficient data communication for distributed
synchronous sgd algorithms. In IEEE INFOCOM. 2019.

[15] Q. Ho et al. More effective distributed ml via a stale synchronous parallel
parameter server. In NIPS. 2013.

[16] J. Langford et al. Slow learners are fast. In NIPS. 2009.
[17] J. Jiang et al. Heterogeneity-aware distributed parameter servers. In

ACM SIGMOD. 2017.
[18] W. Zhang et al. Staleness-aware async-SGD for distributed deep learning.

arXiv preprint arXiv:1511.05950, 2015.
[19] F. Song et al. A scalable framework for heterogeneous GPU-based

clusters. In ACM SPAA. 2012.
[20] J. Dean et al. Large scale distributed deep networks. In NIPS. 2012.
[21] M. Li et al. Efficient mini-batch training for stochastic optimization. In

ACM KDD. 2014.
[22] K. Hsieh et al. Gaia: Geo-distributed machine learning approaching

LAN speeds. In USENIX NSDI. 2017.
[23] H. Cui et al. Exploiting iterative-ness for parallel ml computations. In

ACM SoCC. 2014.
[24] T. M. Chilimbi et al. Project Adam: Building an efficient and scalable

deep learning training system. In USENIX OSDI. 2014.
[25] A. Krizhevsky et al. Learning multiple layers of features from tiny

images. 2009.
[26] J. Deng et al. ImageNet: A large-scale hierarchical image database. In

IEEE CVPR. 2009.
[27] Cisco devices only support full-duplex. https://www.cisco.com/c/en/us/

support/docs/lan-switching/ethernet/10561-3.html.
[28] D. Halperin et al. Augmenting data center networks with multi-gigabit

wireless links. In ACM SIGCOMM. 2011.
[29] Apache Thrift. https://thrift.apache.org/.
[30] K. He et al. Deep residual learning for image recognition. In IEEE

CVPR. 2016.
[31] K. Simonyan et al. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.
[32] TensorFlow Inception-V3. https://github.com/tensorflow/models/tree/

master/research/inception.
[33] Y. Gong et al. Compressing deep convolutional networks using vector

quantization. arXiv preprint arXiv:1412.6115, 2014.
[34] S. Han et al. Learning both weights and connections for efficient neural

network. In NIPS. 2015.
[35] A. Harlap et al. Addressing the straggler problem for iterative convergent

parallel ml. In ACM SoCC. 2016.

