Speculative Slot Reservation: Enforcing Service
Isolation for Dependent Data-Parallel Computations

Chen Chen, Wei Wang, Bo Li
Hong Kong University of Science and Technology

{cchenam, weiwa,

Abstract—Priority scheduling is a fundamental tool to provide
service isolation for different jobs in shared clusters. Ideally,
the performance of a high-priority job should not be dragged
down by another with a lower priority. However, we show in this
paper that simply assigning a high priority provides nro isolation
for jobs with dependent computations. A job, even receiving the
highest priority, may give up compute slots to another before
proceeding to the downstream computation, which is because of
barrier, i.e., that the downstream computation cannot start until
all the upstream tasks have completed. Such an interruption of
execution inevitably results in a significant delay.

In this paper, we propose speculative slot reservation that
judiciously reserves slots for downstream computations, so as
to retain service isolation for high-priority jobs. To mitigate the
utilization loss due to slot reservation, we analyze the trade-off
between utilization and isolation, and expose a tunable knob
to navigate the trade-off. We also propose a complementary
straggler mitigation strategy that uses the reserved slots to run
extra copies of slow tasks. We have implemented speculative
slot reservation in Spark. Evaluations based on both cluster
deployment and trace-driven simulations show that our approach
enforces strict service isolation for high-priority jobs, without
slowing down the other jobs with a lower priority.

I. INTRODUCTION

Today’s data-parallel clusters are shared by multiple tenants
running diverse jobs with complex workflows in the form
of directed acyclic graphs (DAGs). In such shared, multi-
tenant environments, providing service isolation between jobs
of different tenants is of paramount importance.

Many production schedulers have been developed to provide
performance isolation in shared clusters [1]-[7], with priority
scheduling as a fundamental tool for policy enforcement. For
example, in order to prevent the performance of business-critical
production jobs from being dragged down by the experimental,
non-critical jobs, the scheduler assigns the former a higher
priority than the latter [3], [8]-[10]. Service isolation can also
be provided via fair sharing, which is implemented by dynamic
priority scheduling, in that jobs with the least allocation share
are prioritized for resource allocation [1], [2], [5]-[7].

Enforcing service isolation by means of priority scheduling
critically requires that the performance of high-priority jobs
should not be adversely impacted by others with lower
priorities. While this is a trivial requirement for non-workflow
jobs with no dependent computations (e.g., map only and reduce
only), it is no longer true for workflow jobs with complex DAGs.
To illustrate this problem, we ran two Spark MLIib [11] jobs,'

'In this paper, a job refers to an application, not a Spark action.

bli}@cse.ust.hk

Z200

g Bl Running alone 161 170
= 150 =20 In contention

=)

S 102

k5 100

o

§ 50F 5

o)

2 KMeans SVM

Fig. 1: [Cluster] Priority scheduling provides no service
isolation. We ran two Spark MLIib jobs, KMeans and SVM, on
an EC2 cluster with 4 m4.1large instances. Each job consists
of multiple dependent phases, and the degree of parallelism
is 8. The KMeans job, though scheduled at a high priority,
is significantly slowed down in contention with the SVM job
with a lower priority.

KMeans and SVM, in a cluster of 4 Amazon EC2 m4.large
instances [12], where KMeans is assigned a higher priority
than SVM. Fig. 1 compares the completion times of the two
jobs running alone against running in contention. Contrary to
our expectation, KMeans, though scheduled at a higher priority,
suffers from 3.9x slowdown in contention with the SVM job.

The root cause of this problem results from the work
conservation requirement of task scheduling, in that a compute
slot should not be left idle if it can be offered to a backlogged
task. In the previous example, both KMeans and SVM jobs
consist of dependent tasks and are executed in pipelined phases.
A phase can only start after all tasks in the upstream phase
have completed, due to the dependency limitation known as
the barrier. More often than not, tasks belonging to the same
phase have varying execution times due to data skew, cross-rack
traffic and unstable machine state [13]—[15]. Therefore, when a
task of a high-priority job (e.g., KMeans) finishes, in case of a
barrier, the downstream phase cannot start right away. A work
conserving scheduler would then offer the newly released slot
to a task of a low-priority job (e.g., SVM). Therefore, KMeans
gives up most of its slots to SVM upon a phase transition, before
a barrier. Worse, those slots cannot be reclaimed immediately
after the barrier has been cleared, and KMeans has to wait for
the completion of the occupying SVM tasks. The result is a
long job completion delay, the significance of which increases
with the number of phases.

That priority scheduling fails to provide desired service
isolation has two consequences. First, it makes the behaviors
of priority-based cluster schedulers, including fair schedulers,

hard to reason about. Second, it promotes strategic behaviors as
tenants can receive more “free” compute resources by launching
jobs with long-running tasks at a low priority.

In light of these problems, our objective in this paper is to
enforce the strict service isolation, in that the performance of
a workflow job would not be dragged down by others at lower
priorities. We propose a simple “drop-in” solution to achieve
this objective, which we call speculative slot reservation. Our
key idea is to take advantage of the rich semantics of the
workflow DAGs that are readily available to the scheduler upon
a job submission, e.g., [16]-[19]. By tracking the execution of
workflow DAGs in runtime, we can speculate if a slot released
by an upstream task of a high-priority job can soon be reused
to accommodate its downstream computations. This allows
us to judiciously hold the soon-to-be-reused slots from being
taken by a job with a lower priority, enforcing the service
isolation without sacrificing much on the resource utilization.

One concern about slot reservation is the potential utilization
loss. To address this problem, we develop two complementary
approaches. In the first approach, we impose a slot reservation
deadline beyond which the reservation expires and the slot is
released to other jobs. We analyze how the reservation deadline
may impact on utilization and isolation through a simple, yet
accurate analytical model. Our analysis establishes the trade-
off between the two metrics, based on which we implement a
tunable knob to navigate the trade-off. In the second approach,
instead of keeping a reserved slot idle, we turn it into straggler
mitigators to speed up the computation. Specifically, for a job,
we aggressively use its reserved slots to run extra copies of
its slow tasks (i.e., stragglers), and for each task, we pick the
copy, original or replica, that finishes earlier.

We have prototyped speculative slot reservation in Spark. Our
cluster deployment on 50 m4.large instances in Amazon EC2
shows that our implementation provides near-perfect service
isolation for priority scheduling. Compared with running
alone in the cluster, high-priority jobs only experience a
slight scheduling latency < 10% when contending with the
background workloads with a lower priority. In addition, by
tuning the knob, our implementation can flexibly navigate the
trade-off space between utilization and isolation. Trace-driven
simulations further demonstrate that our straggler mitigation
strategy can significantly reduce the job completion time by
over 70% for typical production workloads with a heavy tail
of latency distribution.

II. BACKGROUND AND MOTIVATION
A. Background

Workflow jobs. Prevalent parallel processing frameworks run
data analytics jobs as workflow DAGs. For example, Dryad [20]
and Tez [18] provide users with APIs to explicitly specify the
workflow DAGs of data-parallel jobs. Spark [19] compiles jobs
into DAGs of resilient distributed datasets (RDDs). Oozie [16]
allows users to perform complex data analytics by composing
multiple jobs into a logical workflow DAG.

In data-parallel clusters, workflow DAGs are executed in
pipelined phases, each consisting of several tasks that can run

Barrier
Phasel | Phase2

Phasel Tasks from other jobs
Slotl: | I
Slot2: | |

Slot3: I]
» 4

Slot4: 1 Tt

(a) Running alone without contention (b) In contention with other jobs
Fig. 2: The execution of a workflow job in pipelined phases.
Phasel Tasks from other jobs Phase2

Slot1:
Slot2:
Slot3:
Slot4: t

(a) Case 1: Resume downstream computation on the same slots

Phasel Tasks from other jobs

Slotl:
Slot2:
Slot3:
Slot4:

|

. Phase2

Slotl12: chal,lty |
Slot27: wait time]
Slot56: <> |

Slot98: | | I R

T —>

(b) Case 2: Resume downstream computations on different slots

Fig. 3: Once the execution of a workflow job is interrupted
before a barrier, its completion would be delayed.

in parallel on different compute slots. Between two phases
there is a barrier, meaning that the downstream phase cannot
start until all tasks in the upstream phases have completed. In
many frameworks such as Spark [19], downstream tasks will
not be submitted to the scheduler before the barrier has been
cleared. As a toy example, Fig. 2a illustrates the execution
of such a workflow job running alone in four slots. Note that
tasks in the same phase may have uneven execution times due
to data skew, networking, and resource competition [13].

Work conserving schedulers. In order to achieve high cluster
utilization, production schedulers are designed to be work
conserving, in that no slot is left idle in the presence of a
backlogged task [1], [2], [7], [21]. This seems to be a natural
requirement that should be enforced by all means. However, we
show in the following subsection that naive work conservation
may significantly delay job completion in a shared cluster.

B. Naive work conservation delays job completion

One issue associated with work conservation is that it results
in frequent interruptions during the workflow execution, even
for jobs at the highest priority. We refer back to the previous
example and assume that there is another job contending at
a lower priority. As illustrated in Fig. 2b, initially all slots
are used to serve phase-1 of the high-priority job (shown in
orange). Because of the barrier, the downstream computation
cannot start right after the completion of a phase-1 task. The
work conserving scheduler then offers the idle slots to the
low-priority job (in dark blue), interrupting the execution of
the other. We next discuss two cases and show that such a
service interruption delays job completion significantly.

Case-1: Downstream computations resume on the same
slots. Because downstream tasks depend on the output of
upstream computations, scheduling these tasks onto the same
slots used in upstream phases helps provide data locality [7],
leading to fast task completion. However, as illustrated in

I Running alone
|| EESE In contention

F—Z1 In contention (background task duration x2)

100

Job Completion Time (s)

(=)

KMeans SVM

PageRank

Fig. 4: [Cluster] The foreground jobs, despite having a higher
priority, can be severely slowed down by the background jobs.

Fig. 3a, it may take a long time for the job to reclaim the
preferred slots with the dependent data.?> But how would this
impact the job completion time? We answer this question
through the following experiments.

Cluster deployment: We deployed a Spark cluster in Amazon
EC2 with 50 worker machines. Each machine is an m4.large
instance with 2 cores and 6.5GB RAM, and is configured to
host 2 Spark executors. We ran two types of workloads in the
cluster, latency-sensitive workflow jobs and latency-tolerant
batch processing jobs. We assign a higher scheduling priority to
the former than to the latter, and refer to the former (latter) as
the foreground (background) jobs. The foreground jobs consist
of three applications, KMeans, SVM and PageRank, which
are typical machine learning and graph analytics algorithms
provided by SparkBench [22], a comprehensive benchmarking
suites for Spark. The background workloads consist of 100
synthesized jobs randomly sampled from the Google cluster
traces [10] in a one-hour window. Concerning the small cluster
we have, we scaled down the task runtime in traces by 10x.

Methodology: To quantify how the background jobs may
impact the foreground applications, we ran each foreground job
in three environments at different levels of contention: running
alone, in contention with background jobs, and in contention
with prolonged background jobs (task runtime x 2).

Compromise of service isolation: We compare in Fig. 4 the
completion times of each foreground job running at different
levels of contention with background workloads. We see that
the foreground job, even granted the highest scheduling priority,
is significantly delayed by the low-priority competitors, the
degree of which is in proportion to the duration of background
tasks. To better illustrate this problem, in Fig. 5, we micro-
benchmarked the number of running tasks of KMeans over
time, with and without the contention of background workloads.
We see that KMeans loses slots to background jobs before a
barrier, and it takes a long time to ramp up afterwards.

Case 2: Downstream computations resume on different
slots. As shown in Fig. 3b, in case that the preferred slots
with dependent data are not available for too long, the
downstream tasks, after waiting for a certain time (specified
by spark.locality.wait in Spark), would be scheduled onto
some different slots without data locality [7]. These tasks have

2Task preemption is expensive to implement and is not supported by many
cluster schedulers. Even enabled, the preemption is usually done after a grace
clean period, and may incur additional slot preparation overhead.

225 225

Z z

=20 = 20

(o} (5]

2 2

5 15 51 |

2 2

S S

L £ 1

5 = |‘I L 1 1l

z % 50 0 ~ % 50 100
Time (s) Time (s)

(a) Running alone (b) Contending with background jobs

Fig. 5: [Cluster] A detailed view of the KMeans execution
over time (degree of parallelism = 20), without and with the
background jobs contending at a lower priority.

10*
3 g 3 747
2.210° |
&g
§5 102 |33 33
-~
< g0 LIt

KMeans SVM PageRank
Fig. 6: [Cluster] Task slowdown without data locality.

to fetch data from remote machines and, even worse, may run
into a “cold” JVM without pre-loaded classes or compiled
bytecode [23]. All these result in a non-trivial task slowdown.

To quantify the significance of task slowdown due to the
loss of data locality and “cold” JVM, we randomly sampled
five phases for each of the three SparkBench applications in
the previous experiment and ran their tasks on different slots
in different phases (at locality level ANY). We measured the
task duration and normalize it by that of running on the same
slots across phases (at locality level PROCESS_LOCAL). We see
from Fig. 6 that the tasks, if not running at the best locality
level, could be dramatically slowed down by up to two orders.

C. Summary

In summary, our experiments confirm that frequent service
interruptions due to naive work conservation inevitably result in
a significant job completion delay, irrespective of the scheduling
priority the job receives.

We note that this problem widely exists in clusters for
both inter- and intra-application scheduling. Prevalent cluster
resource managers such as YARN [9] and Mesos [8] are
agnostic to the underlying application workflows, and may
frequently offer the slots released by one application to
another, even though these slots would soon be needed by
the downstream computations of the former. Similar problem
also arises within an application. For example, a SparkSQL
service runs different query jobs submitted by multiple client
threads: any of these jobs may give up slots to others before a
barrier. We expect that this problem would become even more
salient in the future given the recent push of finer-grained slot
multiplexing and container reuse in production clusters, e.g.,
Spark Job Server [24] and Tez Sessions [18].

III. SPECULATIVE SLOT RESERVATION: THE BASICS

Our previous experiments reveal that the key to enforcing
service isolation for a workflow job is to prevent its execution
from being interrupted by another job with a lower priority.
This requires us to purposely reserve some compute slots for
downstream computations. In this section, we first show that
naive reservations can be highly inefficient with low utilization.
We then propose our basic design of speculative slot reservation
to provide isolation without much utilization loss.

A. Inefficiency of naive slot reservation

Prevalent cluster resource management systems allow high-
priority jobs to hold their compute resources through two simple
policies: static slot reservation and timeout-based reservation.
However, neither is efficient.

1. Static slot reservation: In systems such as Mesos [8] and
Borg [3], cluster operators can statically reserve a certain
number of compute slots for a group of latency-sensitive
jobs. However, static slot reservation fails to capture the
changing computational demands of production workloads,
and may end up with either over-provisioning or under-
provisioning: The former results in unnecessary resource
waste with low utilization, while the latter compromises
service isolation.

2. Timeout-based slot reservation: With dynamic resource
allocation in Spark [25], after a task finishes, its slot
(executor) can be automatically reserved for that job before
a specified timeout threshold. However, this approach
is inefficient in two aspects. First, the reservation is
made blindly even if there is no downstream computation.
Second, such a fixed threshold provides no guarantee
that a slot can always be reserved till the submission of
downstream computations.

B. Basic design of speculative slot reservation

Overview. Driven by the inefficiency of naive strategies, we
propose speculative slot reservation that judiciously reserves
slots to provide service isolation at a low utilization cost. Our
key intuition is that a slot should be reserved only when it could
be reused shortly by downstream computations. To this end, we
make use of the DAG information of workflow jobs, which is
readily available to the cluster scheduler after the job has been
submitted [18]—-[20]. With this information, once a task finishes
on a slot, we can speculate whether the slot can be reused to
accommodate a downstream task, and correspondingly choose
to reserve or release that slot.

Following this intuition, we next present our basic design of
speculative slot reservation in two cases, with and without a
priori knowledge about the degree of parallelism of downstream
phase. The degree of parallelism measures the number of
parallel tasks in a phase. Algorithm 1 summarizes our basic
design, which would be further refined in Sec. IV.

Case-1: No prior knowledge about the degree of par-
allelism in the next phase. Many frameworks typically
determine the degree of parallelism at runtime [18], [19].

Without this information, we cannot know exactly how many
slots are needed in the next phase. The best we can do is to
assume the same degree of parallelism across different phases.
Therefore, whenever a task finishes on a slot, unless the task is
in the last phase, our algorithm reserves the slot for downstream
computations (lines 2—8 of Algorithm 1).

While simple, this strategy turns out to be a very good
approximation in production clusters. Many production work-
loads exhibit the stable degree of parallelism throughout the
execution. For example, workload studies on traces collected
from Facebook’s Hadoop clusters and Microsoft Bing’s Dryad
clusters reveal that over 91% of jobs with < 10 tasks never
change the degree of parallelism in different phases [26].

Case-2: The degree of parallelism in the next phase is
available beforehand. In some cases, it is possible to obtain
the parallelism information a priori. For example, in order to
fine-tune the job performance, users would like to explicitly
specify the degree of parallelism in their programs. In addition,
for recurring jobs that are run periodically in production
clusters (which account for 40% of workloads in Microsoft’s
production clusters [27]), the degree of parallelism can be
accurately learned from previous runs. Taking use of this
information helps reserve slots more effectively.

In particular, let m and n respectively denote the degree
of parallelism in the current and next phase. Our algorithm
differentiates between the following three cases:

1. The degree of parallelism remains unchanged (m = n).

In this case, the algorithm simply reserves all slots used
in the current phase (line 8 of Algorithm 1).

2. The degree of parallelism decreases (m > n). In this
case, out of the m slots used in the current phase, we
let go the first m — n slots that become idle, and hold
the remainder (line 9-13 of Algorithm 1). This way, the
utilization loss due to slot reservation is minimized.

3. The degree of parallelism increases (m < n). In this
case, simply reserving slots used in the current phase is
insufficient to accommodate downstream computations.
We therefore resort to pre-reservation. Specifically, we
borrow the similar idea of reduce slow start in Hadoop
[28] and define a pre-reservation threshold %. When the
fraction of completed tasks in the current phase exceeds
Z, the scheduler starts to opportunistically reserve the
additional n — m slots released by other jobs (line 14-17
of Algorithm 1). This way, when the next phase starts, its
tasks can acquire slots right away without further delay.

Support of priority scheduling. Our speculative slot reser-
vation can naturally support priority scheduling. Once a slot
is reserved for a job, it inherits the priority of that job. The
reservation will be respected by other jobs with lower or equal
priorities but can be overridden by those with higher priorities.

C. Discussions

Changing resource demands across phases. So far, we have
implicitly assumed that tasks in different phases of a job
have consistent resource demands and can fit in the same

Algorithm 1 Speculative Slot Reservation

1: procedure HANDLETASKCOMPLETION(k, s)
> task k completes on slot s

2 if task k in the final phase then
3 release s
4 else
5: m < k.phase.numTasks
6: n < k.downstreamPhase.numTasks
7 if n not available or m == n then
8: reserve s and s.priority<— k.job.priority
9: else if m > n then
10: if k£ in the m — n tasks finishing first in k.phase then
11: release s
12: else
13: reserve s and s.priority<— k.job.priority
14: else >m<n
15: reserve s and s.priority<— k.job.priority
16: if k.phase.finishedTaskFraction > % then
> pre-reserve threshold Z is reached
17: start requesting and reserving additional n — m

slots for k.downstreamPhase

18: procedure TRYALLOCATETASK(k, s) © task k requests slot s
19: if s is reserved and s.priority > k.job.priority then

20: skip allocation
21: else
22: allocate slot s to task k

slot consisting of the same amount of resources (e.g., memory,
CPU cores, etc.). While this is true in many frameworks such
as Spark, it may not be the case for other frameworks such as
Tez, in which tasks may demand different amounts of resources
across phases. Nevertheless, speculative slot reservation can
still be beneficial: if a slot used in the current phase is too
small to accommodate a downstream task, we can release it
immediately while pre-reserving another one of the right “size”
(similar to Case-2.3, Sec. III-B).

Utilization loss due to speculative slot reservation. While
our algorithm speculatively reserves slots only when needed,
the utilization loss could still be a concern. However, we argue
that this should be a minor issue in production clusters. Most
latency-sensitive applications our algorithm targets for are small
jobs, with short-running tasks and the low to medium degree
of parallelism. According to the recent studies [26], in typical
production clusters, the smallest 90% of jobs consume only
6% of the total resources. Therefore, reserving slots for these
small jobs does not result in a salient utilization loss.

Despite the argument above, to further reduce the utilization
loss, we refine our design with two complementary approaches
in the next section.

IV. MITIGATING UTILIZATION LOSS DUE TO RESERVATION

In this section, we first identify stragglers as the root cause
of utilization loss when slot reservation is enforced. We then
analyze how long a slot should be reserved in the presence
of stragglers, with an objective of striking a flexible balance
between utilization loss and isolation guarantee. We further
propose a straggler mitigation strategy that aggressively uses
the reserved slots to execute extra copies of slow tasks.

Phasel Phase2 Phasel Tasks from other jobs
Slotl: | idle I
Slot2: <= |
Slot3: | ! | |
Slot4: | [[y H
Reservation'Deadline t Reservation Deadline t

(a) Slot reservation is effective, in that
all tasks in the current phase have
completed before the given deadline.

(b) Slot reservation is ineffective, in
that not all tasks can complete by the
deadline.

Fig. 7: Imposing a reservation deadline to bound the utilization
loss.

A. The root cause of utilization loss

We attribute the root cause that slot reservation harms
utilization to the uneven task runtime. Because of the barrier, a
slot having its task completed earlier is kept idle until the next
phase starts, a time dictated by the slowest task of the current
phase. Therefore, the longer the latency tail of the computation,
the more significant the utilization loss. Unfortunately, for a
data-parallel job with a high degree of parallelism, it is common
that many tasks may become stragglers, i.e., running much
slower than expected [14], [26], [29]. Consequently, simply
holding a slot till the next phase starts may, in the worst case,
result in unbounded utilization loss. We address this problem
in the next subsection.

B. Hong long should a slot be reserved?

A simple, yet effective approach to mitigate the utilization
loss is to impose a bounded reservation period. In particular,
we associate each slot reserved in the current phase with a
deadline, beyond which the reservation is expired, and the slot
becomes free to use by other jobs. Fig. 7 shows an example. The
question is: how long should we set the reservation deadline?

The trade-off between isolation and utilization. Intuitively,
imposing an early deadline helps mitigate the utilization loss.
The price paid is a weak isolation guarantee. The job can
hold the slots for downstream computations only if all tasks in
the current phase complete before the reservation has expired,
which is less likely if the deadline is too early. Imposing a late
deadline for a long reservation, on the other hand, likely retains
the isolation guarantee, at the expense of low utilization.

To quantify such a trade-off between isolation and utilization,
we turn to a simple analytical model, based on which we will
discuss how a cluster operator can navigate the trade-off.

1) Notations: Without loss of generality, we assume that a
compute phase starts at time 0. Let & be the slot reservation
deadline, after which all the reserved slots will be released
to other jobs. Let N be the number of parallel tasks in the
current phase. We say slot reservation with deadline 7 is
effective if all N tasks complete before &. In other words,
with effective slot reservation, the computation proceeds to
the next phase without giving up slots. Given deadline 2, let
P be the probability that the slot reservation is effective. We
measure the level of isolation guarantee by P. Finally, let U
be the utilization, measured as the fraction of busy periods of
slots. We shall establish the tradeoff between isolation P and
utilization U.

5 — a=1.6 5 — a=1.6
%0'8 --- a=3.6 %0‘8 il --- a=3.6
m [5a]

;8 0.6 . afVS.G c.a 0.6} a=5.6
=]) =] \

504 < g 0.4}~

2 ol

50.2 \ 50.2 o

2 2

= 8002 04 06 08 1.0 = 8002 04 06 08 10

Service Isolation P
(b) Degree of parallelism = 200

Service Isolation P
(a) Degree of parallelism = 20

Fig. 8: [Numerical] Trade-off between utilization and isolation
based on Eq. (4).

2) Workload model: Workload studies on Facebook and
Microsoft Bing traces [29], [30] suggest that task durations
in production clusters follow Pareto distribution, a heavy-tail
distribution with a polynomially decaying tail. The CDF of
Pareto distribution w.r.t. task duration ¢ is given by

17(@) t> tm,
¢

0 t< tm,

F(t) = (1)

where « is the shape parameter and t,,, the scale parameter. A
smaller « implies a heavier tail, i.e., more long-running tasks.
For a meaningful shape parameter, we have o > 1. Scale
parameter t,,, on the other hand, measures the shortest task
runtime, which can be well approximated by the duration of
the task that finishes first in a phase.

3) Quantifying the trade-off: We first analyze how reserva-
tion deadline 2 may impact isolation guarantee. By definition,
we measure isolation guarantee by the probability that all NV
tasks in the current phase complete before the deadline:

P=F@)" = [1-(2)", @

We next analyze how reservation deadline 2 may impact
on the expected utilization F[U]. Because the exact analysis
does not give a closed-form solution, we instead derive a lower
bound of E[U] by assuming that all slots are reserved until
the deadline:

1 @
— t- f(t)dt
7) 1w

o ((t, L (tm\”
Ca—-1\2 a—-1\92)’
where f(¢) is the PDF of Pareto distribution.
Combining Eqs. (2) and (3), we establish the following
trade-off analysis between utilization and isolation:

BU)> 21— PR)R - (1 PY),

E[U]

Y

3)

“4)

It can be shown that Eq. (4) is monotonically decreasing w.r.t. P.
Meaning, a higher utilization is achieved at the expense of
a lower level of isolation guarantee. As two extreme cases,
enforcing strict isolation (i.e., P = 1) may lead to arbitrarily
low utilization; providing no isolation (i.e., P = 0) incurs no
utilization loss (i.e., F[U] = 1). Fig. 8 depicts the numerical

1]
Slotl: [[Task-T i Task-3-copy !
Slot2: Task-2 Task-4-copy
Slot3: Task-3 [
Slot4: : Task-4) o,
half of all tasks complete \ kill initial copy of Task-4 !

reduced phase X
completion time \
[}

Fig. 9: An illustrative example of our straggler mitigation
strategy. Once Task-2 has completed, the number of reserved
slots (Slotl and Slot2) becomes equal to the number of on-
going tasks (Task-3 and Task-4). We then schedule an extra
copy of each on-going task to a reserved slot. Task-4 is killed
after its copy has completed, and the phase completion time is
reduced.

results of the trade-off curve for workloads with different
latency tails (i.e.,), where the degree of parallelism is set to
20 and 200, respectively. We see that the trade-off becomes
increasingly sharp as the latency tail turns heavier (smaller).

Navigating the trade-off. Our analytical model provides a
general guideline to navigate the trade-off between isolation
and utilization. For example, cluster operators can allow each
user to specify the desired isolation guarantee P, which is
the probability that the user can retain its compute resources
without being interrupted during the phase transition. To enforce
the specified isolation guarantee, the operators impose the
corresponding reservation deadline derived from Eq. (2):

D =tp(1— PV)a,

The operators can then charge each user based on the incurred
utilization loss due to slot reservation (Eq. (4)). This way, the
operators can fine-tune the trade-off between the demands for
isolation and the incurred utilization loss. We shall evaluate
this point through prototype experiments in Sec. VI.

C. Mitigating stragglers using reserved slots

As shown in Fig. 8, when workloads consist of more
stragglers (i.e., heavy-tailed with small «), the trade-off between
isolation and utilization can be very sharp, leaving little space
for operators to land in a middle ground by tuning the slot
reservation deadline. This problem can be prevalent in real
systems as production workloads typically have a long tail of
latency distribution with small « € [1,2] [29]. We propose a
novel straggler mitigation strategy to address this problem.

Turning reserved slots into straggler mitigators. Instead of
keeping the reserved slots idle, we aggressively use them to
execute extra copies of slow tasks. Specifically, our algorithm
keeps track of the number of on-going tasks and the number of
reserved, yet idle slots in the current phase. Once the former
falls below or equals to the latter, we have a sufficient number
of reserved slots to help speed up all the on-going tasks, which
we deem as “stragglers.” For each of these stragglers, we launch
an extra copy on a reserved slot, and pick the one—the original
or the replica—that finishes earlier.

To better illustrate our idea, we refer to the example in
Fig. 9, where a compute phase consists of four tasks running
on four slots. After the first two tasks have completed, we have
a sufficient number of reserved slots to execute extra copies

100% . . . -
0—o nparallelism: 20 | |
&< parallelism: 200

o
S
X

NN
S 2
X X

Completion Time (%)
3]
S
X

Avg. Reduction of Phase

1%

26 36 46 56
Shape Parameter «

6.6

Fig. 10: [Numerical] Our straggler mitigation strategy speeds
up the in-phase computation. Each data point is averaged over
1000 runs.

of the remaining two on-going tasks. In case that task-4 is
a straggler, our approach effectively speeds up its execution,
enabling the computation to progress to the next phase much
earlier. The utilization loss is hence reduced.

We next investigate how our straggler mitigation strategy
helps speed up the job execution through simple numerical
studies. We postpone the simulation study to Sec. VI.

Numerical study. We start with some notations. Assume that a
compute phase consists of IV tasks running on N slots. Let £,
denote the duration of the k™ shortest task. Without straggler
mitigation, the phase completion time is dictated by the slowest
task, i.e., T = t(N)- We now use the reserved slots to mitigate
stragglers. For the k™ shortest task, let t'(%) denote the duration
of its copy. Because extra copies are launched after half of the
tasks have completed, the phase completion time is derived as

max

T =t +
3D T SN

min{t) — t((%]),tzk)}.

To quantify how straggler mitigation speeds up job com-
pletion, we compare 7" and T. Given that there is no closed-
form expression of 7", we resort to numerical studies, where
task durations are drawn i.i.d. from Pareto distribution with
varying shape parameters «, from a heavy to a light latency
tail. Fig. 10 shows the numerical results with different degree
of parallelism. In general, the speedup derived from straggler
mitigation becomes more salient when the workloads have a
heavier latency tail and are of a higher degree of parallelism.
For typical production workloads with oz = 1.6 [29], straggler
mitigation reduces the job completion time by over 50%.

Advantages over the status quo. We compare our strategy to
the state-of-the-art speculative straggler mitigation. Existing
approaches keep track of the execution progress of each task
and speculate which one is likely to become a straggler, for
which an extra copy is executed on another machine [13], [26],
[30]. Compared with the status quo, our approach has the
following three advantages.

First, our approach does not need to maintain a complex logic
for straggler speculation, and is less expensive to implement.
Second, our approach requires no additional slot to mitigate
stragglers for a job—all slots used are already reserved for
it. In this sense, our approach is interference-free between
jobs. Third, our approach incurs no JVM warm-up overhead
(e.g., class loading and interpretation of bytecode) for straggler

Submit Apps

DAGScheduler])

JL SubmitTasks(TaskSet)
\/
TaskSetManager

- Reservation Deadline
- Pre-reserve Threshold

D D D D Tasks|
:I A - —1 Approval

] \ \ A)
ResourceOffers(Offers, TaskSets) E:l Logic

Ij I:I IVII Iil I:, “D ______ Executor (Slot) Offers

ﬁ MakeOffers()
(ClusterSchedulerBackend

TaskSchedfilerimpl

TaskSetManager

\ \ \

Fig. 11: Architecture overview of speculative slot reservation
in Spark.

mitigation, which is frequently the bottleneck in data-parallel
frameworks [23]. With our approach, a copy of a slow task
is always spawned on a reserved slot with loaded classes and
compiled code, given that the slot has just been used to execute
tasks in the same phase. Our EC2 deployment on 20 m4.large
instances confirms that tasks of Spark MLIib jobs can enjoy
up to 8x speedup if running on slots with warm data.

D. Summary

We stress that the two approaches presented in this section
are complementary to each other in that they target on different
workloads. For light-tailed workloads, judiciously setting a
reservation deadline allows operators to strike a good balance
between utilization loss and isolation guarantee. For heavy-
tailed workloads, mitigating stragglers using reserved slots can
effectively speed up job completion.

V. PROTOTYPE IMPLEMENTATION

In this section, we describe our prototype implementation
of speculative slot reservation in Spark [19]. While we base
our design in Spark, nothing will preclude implementing our
proposal to other systems such as Mesos [8] and YARN [9].

Architecture overview: We prototyped speculative slot reser-
vation in Spark 1.6.1. Fig. 11 gives an architecture overview. In
particular, we implemented the slot reservation logic in three
Spark classes: (1) DAGScheduler which parses the workflow
DAG of a job and makes an execution plan in pipelined phases,
(2) TaskSetManager which manages the execution of all the
parallel tasks within a phase, and (3) TaskSchedulerImpl
which assigns slots obtained from ClusterSchedulerBackend
to tasks submitted by DAGScheduler. We next elaborate our
design in details.

Retrieving the job DAG and its execution plan: When a job
is submitted to the Spark driver, its DAG information becomes
readily available to DAGScheduler. DAGScheduler parses the
job DAG through backward traverse from the final vertex using
depth-first search (DFS). This process virtually constructs a
DAG execution plan in a reverse order. Following this plan,
DAGScheduler then continuously submits tasks in pipelined
phases to TaskSchedulerImpl—the latter would then create

B w/o slot reservation B w/o slot reservation
12/ |z W/ slot reservation 12| ZZ W/ slot reservation
=] =}
£3 ot 2 9 8.5 2>
) o
E E
Z 6 6.1 26
[75) 4.4 ©n 37
3 2.1 3
1.1 1.1 1.1 1.1 1.1 1.1
0KMeans SVM PageRank 0I(Means SVM PageRank

(a) The standard setting (b) Doubling the task durations of the

background jobs
Fig. 12: [Cluster] Slowdown of each foreground job.

glOO—:---: R glOO T

5ogsi Giiiodi 5 o750 0o :

R 2 | :

8 501 F - 8 50} : ;

o . ' o H '

% 25: —_— J‘ob-l % 25¢ = Job-1[]

4 (}E --- Job2 73 0 - Job-2
0 10 20 30 40 0 10 20 30 40

Time (s) Time (s)

(a) W/o speculative slot reservation (b) W/ speculative slot reservation

Fig. 13: [Cluster] Running two synthetic jobs using Spark Fair
Scheduler, where job-1 is composed of 3 pipelined phases, and
job-2 consists of many parallel tasks without dependency.

a TaskSetManager to manage all tasks in one phase. In our
implementation, DAGScheduler would also communicate the
execution plan, along with the degree of parallelism in each
phase, if specified in the user program.

Speculative slot reservation: With the workflow execution
plan and the possible knowledge of the degree of parallelism,
TaskSetManager speculatively reserves slots for the job using
Algorithm 1, and notifies the reservation (or pre-reservation)
to TaskSchedulerImpl. We also implemented the logic of
deadline-based reservation (Sec. IV-B) in TaskSetManager to
fine-tune the trade-off between utilization and isolation. The
reservation deadline will be notified to TaskSchedulerImpl.

Enforcing slot reservation: Finally, we enforce slot
reservation in TaskSchedulerImpl. To this end, we add
the ApprovalLogic to resourceOffers(), a method of
TaskSchedulerImpl that assigns slots to tasks. Specifically,
before a slot is assigned to a task, the ApprovalLogic checks
the validity of the assignment. The assignment is valid only if
the slot has not been reserved, or it is offered to a task with a
higher priority than the job that makes the reservation.

V1. EVALUATION

In this section, we evaluate the performance of speculative
slot reservation through prototype deployment in a 50-node
EC2 cluster. For performance study at a larger scale, we resort
to trace-driven simulations.

4.0 T T T F10
S e
5 80]
3.0 : : : g
=} 3)
g Z 60
220 g \
2 = 40
[7] =1
1.0+ '% 20 T
IS
04503 04 06 08 1.0 = 00 02 04 06 08 1.0

Service Isolation P Service Isolation P

5.0 ;\?10 . . .
svm|| T
MNREED
= 5
és.o» z 60
[=9
Z200 E g I |
2 g \l\
1.0¢ £ 20
08502 04 06 08 1.0 ° 0.0 02 04 06 08 1.0

Service Isolation P Service Isolation P

4.0 §10 . . . i
F PageRank et - PageRank
3.0 : H Q 80’ H
= 5
g z 60}
220 g
g E 40!
@ 1.0 g
08502 04 06 08 1.0 - 0.0 02 04 06 08 1.0

Service Isolation P Service Isolation P

Fig. 14: [Cluster] Measured trade-off between service isolation
and utilization. For all the three MLIib jobs, KMeans, SVM and
PageRank, a higher level of isolation requirement leads to less
slowdown, at the expense of smaller utilization improvement.

A. Prototype deployment

Setup. We deployed our Spark prototype (Sec. V) in a 50-
node EC2 cluster with m4.large instances. Similar to the
previous experiments in Sec. II-B, we ran two types of
workloads in contention, foreground jobs with a high priority
and background jobs with a low priority. The former consists
of three SparkBench applications [22], KMeans, SVM and
PageRank. The later consists of 100 synthesized jobs sampled
from the Google traces [10] in a one-hour window.

Metric. We use slowdown as the main performance metric in
our evaluation. Specifically, we define slowdown for each job
as the measured job completion time (JCT) normalized by the
minimum JCT if the job were running alone in the cluster:

Measured JCT

Slowd = .
owdown Minimum JCT when running alone

We evaluate the performance of speculative slot reservation
by answering the following questions.

Is service isolation provided? We ran two experiments. The
first experiment follows the standard setup described above. In

8 8 8 1
o E=T w/o slot reservation o E=T w/o slot reservation = E=T w/o slot reservation
Z 6L-.|[ZF w/slotreservation 2 6 LZZA wl slot reservation 2 6 [ZZA wl/ slot reservation § L4
] 3 3 213
24 £4 24p8 3l 38 E
»n 29 n »n | o N 2
« 23 2; LRy 24 2.6 - N N) 12
g0 2 go 2 N Y 20 2 1ls >
< 15 (N1 1.1 < 10 1.1 1.1 Z bl 1.1 1.1 < 11
1.
0 SQL MLIib MLIib 0 SQL MLIib MLIib 0 SQL MLIib MLIib .1 03 05 0.7 0.9 None

(Parallelism x2) (Parallelism x2)

(a) The standard setting
background jobs

(b) Doubling the task durations of the (c) Doubling the slowdown factor of
locality

Pre-reserve Threshold #

(Parallelism x2)

Fig. 16: [Simulation] Slowdown
of the SQL jobs.

Fig. 15: [Simulation] Average slowdown of foreground jobs in different settings.

the second experiment, we emulate the contention with long-
running workloads by extending the task runtime of background
jobs by 2x. Fig. 12 compares the slowdown measured for each
foreground job with and without speculative slot reservation
in the two experiments. We see that our proposal enforces
strict isolation for priority scheduling in both experiments.
Each foreground job experiences a minor slowdown (< 10%)
in contention with the background jobs, mainly due to the
scheduling overhead of handling more workloads.

Speculative slot reservation also helps retain service isolation
for fair schedulers. To demonstrate this benefit, we ran two
Spark jobs, using the default Spark Fair Scheduler [1]. The
computation of job-1 consists of three pipelined phases, while
job-2 has no dependent computations (i.e., map only). Ideally,
each job should receive 50% of the cluster resources, as if
it were running alone in a half-sized cluster. However, as
shown in Fig. 13a, job-1 loses all the resources to job-2
between two phases, suffering from a severe delay due to
frequent interruptions. As a comparison, Fig. 13b illustrates
the allocations of the two jobs over time after speculative
slot reservation has been enabled. This time, job-1 is able
to withhold its fair share throughout the execution, achieving
desired service isolation from job-2.

How does isolation impact on utilization? We ran each of
the three foreground jobs in contention with the background
jobs, at different levels of isolation requirement, specified by P
(cf. Eq. (2)), the probability that the execution is not interrupted.
We take P = 1 as the baseline, with which the utilization loss
due to slot reservation reaches the maximum. Given an isolation
requirement, we measure the utilization improvement over the
baseline, i.e., the percentage of the reduction of utilization
loss. We also measure the slowdown of each foreground job.
Fig. 14 shows the results with varying isolation requirements
in three experiments for different foreground jobs, where each
data point is averaged over 10 runs. We see that a higher level
of isolation requirement leads to a lower slowdown. The price
paid is less utilization improvement. In general, the trade-off
between isolation and utilization is smooth across the three
experiments, with the sweet spot achieved at P = 0.4. We have
only spotted a few stragglers in our workloads, and because
of this, we have observed a minor utilization loss (< 5%)
even using the baseline algorithm with P = 1. Given the less

significant concerns about stragglers in our EC2 cluster, we
evaluate the performance of our straggler mitigation strategy
(Sec. IV-C) through simulations in the next subsection.

B. Large-scale trace-driven simulations

Setup. We simulated a 1000-node cluster with 4000 slots. In
such a large cluster, slot acquiring is seldom a bottleneck: a
backlogged task can easily find an available slot within a short
period of time. Instead, data locality becomes the primary
concern [7], as the available slot may not have the desired
input data. In our simulation, we set the locality wait time
to 3s, the same as in Spark. That is, if a task cannot find an
available slot with preferred data locality in 3s, it would accept
any offer afterwards. Despite our observations of significant
task completion delays without data locality (up to two orders
in Sec. II-B), we make a conservative estimation in simulation
by assuming 5x task runtime if data locality is not provided.

Workloads. Similar to the cluster deployment, in our sim-
ulation, we ran foreground jobs at a higher priority than
the background jobs. The foreground jobs are synthesized
workloads from two traces, the SQL traces [31] consisting
of 20 queries provided by the TPC-DS benchmark and the
Spark MLIib traces we collected in our cluster deployment.
To stress test the performance of speculative slot reservation,
we also ran MLIib jobs with 2x degree of parallelism in the
foreground. The background workloads consist of a mix of
8000 jobs synthesized from the Google traces [10], SQL traces
[31] and Spark MLIib traces.

Providing service isolation in large clusters. We first identify
data locality as the key factor that critically impacts on the
service isolation in large clusters (Case-2, Sec. II-B). We ran
three experiments without speculative slot reservation. The first
experiment follows the standard setup described above. In the
second experiment, we injected long-running background jobs
with 2x task runtime. In the third experiment, we amplified
slowdown factor of locality by assuming 10x task runtime
if running on a slot without the input data. As shown in
Fig. 15b (dark bars), injecting long-running background jobs
has little impact on the foreground jobs, resulting in a similar
slowdown as observed in the standard setup (Fig. 15a). This
verifies our previous claim that in large clusters, jobs with a
high priority can quickly acquire available slots. Instead, as

[N N
(== =)

Avg. JCT Reduction (%)

—-
(=)}

2.6 3.6 46 5.6 6.6
Shape Parameter o

Fig. 17: [Simulation] Average JCT reduction of the foreground
jobs using our straggler mitigation strategy.

shown in Fig. 15c, it is the data locality that dictates the job
performance: doubling the slowdown factor of locality results
in a significant increase of job slowdown.

Speculative slot reservation helps provide data locality. Slots
used in previous phases hold the output data that will be fed
into the downstream computations. Co-locating downstream
tasks to these slots leads to a salient speedup. This benefit is
clearly demonstrated in Fig. 15 (light bars). With speculative
slot reservation, the two suites of MLIib jobs running in the
foreground suffer from only a minor slowdown (< 10%) in
contention with the heavy background workloads. The SQL
jobs, while experiencing a moderate level of slowdown (1.3-
1.5x), complete much faster than that without slot reservation.

We attribute the changing degree of parallelism as the main
reason that SQL jobs are more susceptible to be dragged down
by the background workloads compared with the MLIib jobs.
Specifically, the job is slowed down when the downstream
computation has a higher degree of parallelism that cannot be
accommodated by the reserved slots in the current phase. In
this case, slot pre-reservation (Case-2.3, Sec. III-B) comes as a
solution, where it starts to pre-reserve extra slots as soon as the
progress of the current phase has reached a specified threshold
Z. As shown in Fig. 16, the earlier the pre-reservation starts
(i.e., small threshold %), the less slowdown the job suffers.

Impact on the background workload. Our study confirms
that speculative slot reservation for foreground jobs has little
impact on the background workload. In particular, we find that
for background jobs, the average slowdown due to speculative
slot reservation is less than 0.1%.

Further improvement through straggler mitigation. Finally,
we investigate how our straggler mitigation strategy (Sec. IV-C)
can further speed up the foreground jobs with a heavy tail of
latency distribution. To this end, for each foreground job, we
artificially adjusted the runtime of its task in a phase so that
the latency follows Pareto distribution with a specified shape
parameter « and the same mean as the original workload.
Fig. 17 shows the reduction of job completion time (JCT)
when applying our straggler mitigation strategy to workloads
with different shape parameters. In general, workloads with a
heavier latency tail (i.e., small «) benefit more from straggler
mitigation. For typical production workloads with v = 1.6
[29], our straggler mitigation strategy significantly reduces the
JCT by 73% on average.

VII. RELATED WORK

There have been extensive efforts on providing service
isolation in shared, multi-tenant environments such as pro-
duction clusters. We broadly classify these approaches into
three categories, by means of queue management, resource
allocation policies and OS-level isolation.

Queue management. When multiple jobs are queued up
for service, service isolation can be provided by determining
their scheduling orders. Production schedulers such as Mesos
[8], YARN [9] and Borg [3] assign a high priority to business-
critical jobs so that they can be serviced first. However, as
we have explained, simply relying on the scheduling priority
is unable to enforce service isolation for workflow jobs with
pipelined phases.

Resource allocation policies. Service isolation can also
be provided by resource allocation policies with the sharing
incentive property [5], [6], [32]-[34]. Meaning, each of n
users is guaranteed at least 1/n of the entire cluster resources.
These policies are also strategy-proofuness, in that a user cannot
increase its allocation share by lying about its demands. These
studies focus on the policy design, while we focus on the
policy enforcement.

OS-level isolation. When tasks of different jobs are sched-
uled onto the same machine, cluster management systems such
as Mesos [8] and Borg [3] isolate resources using OS container
technologies, notably Linux containers [35] and Solaris Projects
[36], that limit the CPU, memory, network bandwidth and I/O
usage of a process tree. These approaches are orthogonal to
our work.

VIII. CONCLUSION

In this paper, we showed that, contrary to the general
belief, priority scheduling fails to provide service isolation
for workflow jobs with dependent computations. To address
this problem, we developed a simple, yet effective solution,
speculative slot reservation. With speculative slot reservation,
the scheduler tracks the execution of workflow DAGs in
runtime, and speculatively reserves slots that have been released
by upstream tasks and can soon be reused by downstream
computations. To further mitigate the potential utilization loss
due to slot reservation, we analyzed the trade-off between
utilization and isolation, and exposed a tunable knob to navigate
the trade-off. We also proposed a complementary approach that
turns the reserved slots into straggler mitigators to speed up
slow tasks. We have implemented speculative slot reservation in
Spark and evaluated its performance in a 50-node Amazon EC2
cluster and in simulations with traces from a Google’s cluster.
Evaluation results suggest that speculative slot reservation
enforces strict service isolation for high-priority jobs, reducing
their JCTs by over 70% on average without slowing down the
other jobs.

ACKNOWLEDGEMENT

This work was supported in part by grants from RGC under
the contracts 615613, 16211715 and C7036-15G (CRF), as well
as a grant from NSF (China) under the contract U1301253.

[1]
[2

—

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

(11]
[12]
[13]

[14]
[15]
[16

[17]
(18]

[19]

REFERENCES

“Spark Job Scheduling,”
job-scheduling.html.

“Hadoop Fair Scheduler,” https://hadoop.apache.org/docs/r2.7.1/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html.

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proc. ACM Eurosys, 2015.

R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan,
“Altruistic scheduling in multi-resource clusters,” in Proc. USENIX OSDI,
2016.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
1. Stoica, “Dominant resource fairness: Fair allocation of multiple resource
types.” in Proc. USENIX NSDI, 2011.

A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and
I. Stoica, “Hierarchical scheduling for diverse datacenter workloads,” in
Proc. ACM SoCC, 2013.

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. ACM Eurosys, 2010.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in Proc. USENIX NSDI, 2011.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache Hadoop
YARN: Yet another resource negotiator,” in Proc. ACM SoCC, 2013.
C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
in Proc. ACM SoCC, 2012.

“Spark MLIib,” http://spark.apache.org/mllib/.

“Amazon EC2,” https://aws.amazon.com/ec2/.

G. Ananthanarayanan, S. Kandula, A. G. Greenberg, 1. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri.” in Proc. USENIX OSDI, 2010.

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74-80, 2013.

Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: mitigating
skew in mapreduce applications,” in Proc. ACM SIGMOD, 2012.
“Apache Oozie,” http://oozie.apache.org/.

“Apache Pig,” http://pig.apache.org/.

B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino,
“Apache Tez: A unifying framework for modeling and building data
processing applications,” in Proc. ACM SIGMOD, 2015.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:

https://spark.apache.org/docs/1.6.1/

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]
[36]

A fault-tolerant abstraction for in-memory cluster computing,” in Proc.
USENIX NSDI, 2012.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed
data-parallel programs from sequential building blocks,” in Proc. ACM
Eurosys, 2007.

“Hadoop Capacity Scheduler,” https://hadoop.apache.org/docs/r2.7.2/
hadoop-yarn/hadoop- yarn-site/CapacityScheduler.html.

M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: a
comprehensive benchmarking suite for in memory data analytic platform
spark,” in Proc. ACM CF, 2015.

D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D. Yuan, “Don’t
get caught in the cold, warm-up your jvm: Understand and eliminate jvm
warm-up overhead in data-parallel systems,” in Proc. USENIX OSDI,
2016.

“Spark Job Server,” https://github.com/spark-jobserver/spark-jobserver.
“Spark Dynamic Resource Allocation,” https://spark.apache.org/docs/1.6.
1/job-scheduling.html#dynamic-resource-allocation.

G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. USENIX NSDI, 2013.
A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, “Jockey:
guaranteed job latency in data parallel clusters,” in Proc. ACM Eurosys,
2012.

“MapReduce Slow Start,” http://www.ibm.com/support/knowledgecenter/
SSGSMK_7.1.1/mapreduce_user/map_reduce_configure_slowstart.html.
X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper:
Decentralized speculation-aware cluster scheduling at scale,” in Proc.
ACM SIGCOMM, 2015.

G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman,
and M. Yu, “GRASS: trimming stragglers in approximation analytics,”
in Proc. USENIX NSDI, 2014.

K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in Proc.
USENIX NSDI, 2015.

A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Choosy: Max-min
fair sharing for datacenter jobs with constraints,” in Proc. ACM Eurosys,
2013.

M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “Hug: Multi-resource
fairness for correlated and elastic demands,” in Proc. USENIX NSDI,
2016.

W. Wang, B. Li, B. Liang, and J. Li, “Multi-resource fair sharing for
datacenter jobs with placement constraints,” in Proc. IEEE/ACM SCI6,
2016.

“Linux containers (LXC) overview,” http://Ixc.sourceforge.net/Ixc.html.
“Solaris Resource Management,” http://docs.sun.com/app/docs/doc/

817-1592.

